A Semantic-based Architecture for Sensor Data Fusion

UBICOMM '08

Stamatios Arkoulis, PhD Candidate National Technical University of Athens

Outline

- >Introduction
- Existing Systems & Applications
- Data Transformation & Semantic Representation
 Motivation
- >The Proposed Architecture
 - Data Layer
 - Processing Layer
 - Semantic Layer
- Conclusions
- ≻Future Work

Sensor networks (wireless)

> attract a lot of attention \rightarrow research \rightarrow innovation

Many implementations worldwide (why?)

- > Nature: smallness, price, energy-efficiency, reliability
- IPv6: no number limitations

huge address space for networking purposes

Improvements in resource management (battery life, computation & communication capabilities, memory)

What about the future?

- sensors everywhere
- accessible via the Internet

Main scientific attention

- networking of distributed sensing
- But what about...
 - > management, analysis, understanding of collected data
- Current sensor deployments
 - Huge number of sensors
 - Heterogeneity
 - Rawness of data
 - little, if any, meaning by themselves
 - Enormous amounts of data stored

We have *many* "Data" but *little* "Information"

The Solution ?

Proper data management (for event detection)

- Data interpretation
 - considering final user requirements / needs / scope
- Data heterogeneity
 - special aggregation schemas
 - combination / comparison / correlation
- Data Aggregation & Processing
 - render them helpful to applications

Key Technology: "The Semantic Web"

>The Semantic Web

- despite the heterogeneity and amount of collected data
 - "meaningful" events extraction
 - interoperability

"Connection of Sensory Data to their environmental features"

- \succ "Semantic Annotation" \rightarrow What?
 - metadata added to any form of content
 - well-defined semantics ease its use
- \succ "Semantic Annotation" \rightarrow How?
 - content description languages
 - query languages
 - annotation frameworks

Existing Systems & Applications

Sensor Web Enablement(SWE) initiative [by OGC]

- \succ Goal \rightarrow Development of Standards
 - b discovery/exchange/processing of sensor observations
- Common encoding/transport protocol used by services
 - no explicit ontological structure proposed yet
 - \succ no formal conceptual model \rightarrow no interoperability

ES3N architecture

- Semantic Web technologies on top of sensor networks
- sensor observations' ontology-based storage
 - mechanisms RDF Repository
- end-user posts semantic queries (SPARQL)
- scalability large data volumes
 - questionable performance / efficiency

Existing Systems & Applications

IrisNet Architecture – Software infrastructure

- > data collection/storage organization (XML) \rightarrow Agents
- end-user queries vast quantities of data (XPath)
- Scalable Powerful Efficient
 - million/distributed/high bit-rate/heterogeneous sensors
- \succ No semantics \rightarrow No data reusability
- SWAP 3-tier architecture (framework)
 - sensory data combination (for high-level tasks)
 - unified end-user view of underlying sensor network
 - > Sensor / Knowledge / Decision layer \rightarrow Agent-based
 - services semantically description to end-users

Existing Systems & Applications

▶ Priamos Middleware – Architecture

- automated
- real time
- unsupervised annotation of low-level context features
- mapping to high-level semantics
- rules composition through specific interfaces
 - content annotation without need of technical expertise
 - context awareness challenges easily addressed

Data Transformation & Semantic Representation

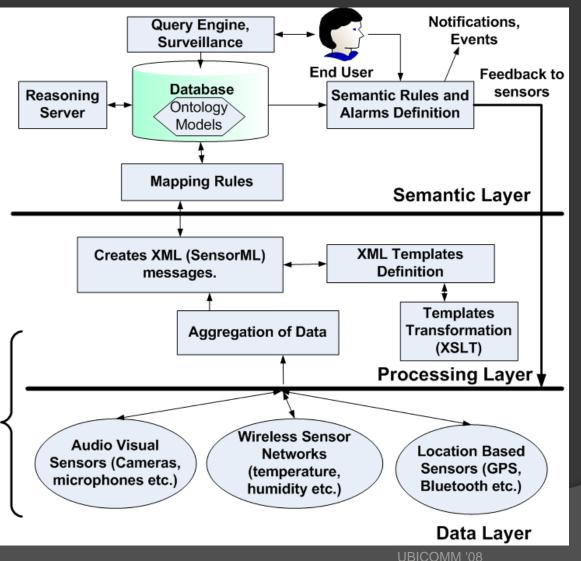
Specific interpretation models

- makes raw sensory data meaningful
- apps' scope / kind of information dependent

>OGC specifications \rightarrow Models & XML Schema:

- <u>O&M</u>: sensor observations and measurements (both archived or/and real-time) encoding
- SensorML: sensor systems (i.e. location) and sensor observations' associated processing description
- Formal semantic representation offers...
 - structured knowledge (concerning a certain domain)
 - specify a domain's important concepts/relations

Motivation


Existing Sensory Data Management approaches

- no support for distributive sensor deployments
- inability to scale well in today increasing environment
 - no applicable to large sensors network
 - small amount of data can be transferred
- lack of context annotation / semantic data representation
- absence of ontological infrastructures for rules & queries
- Such limitations obstruct end-users to...
 - fully exploit the acquired information
 - match events from different sources
 - deploy smart apps able to follow semantic-oriented rules

"Solution: A completely new architecture"

The Proposed Architecture

Secure Environment

> Data management

- Gathering
 - Real-time
 - Recorded
- Aggregation
 - Heterogeneity
- Processing
 - Meaningfulness
- >User defined rules
 - alarms actions
- Flexibility
- > Modularity
- Scalability

Data Layer

Central entities

- sensor discovery
- data acquisition (+policies)
 - \succ event-based \rightarrow data sent directly
 - \succ polling-based \rightarrow data periodical queried
- raw-data collection
 - Location Sensors (Smart Phones, PDAs, etc.)
 - positioning interfaces (Bluetooth, GPS, Wi-Fi)
 - Iocation-sensitive data
 - next layer reached either directly or via special infrastructures
 - Wireless Sensors

Data Layer

- Wireless Sensors (MICA2, eKo, Imote2)
 - Measure and monitor environmental metrics
 - Architectures, routing protocols and schemes exist
 - efficient energy consumption & congestion avoidance
 - Data reaches the next layer
 - routed to specific nodes & forwarded to central entities
 - send directly to central entities
- > Audiovisual Sensors (microphones, cameras, etc.)

rich, real-time content

- special networking requirements to be satisfied
 - bandwidth (huge amount of bits to be transmitted)
 - packet loss (destroyed content / wrong order)
 - jitter (glitches)

 \succ Data reaches the upper layer \rightarrow Web services etc.

Data Layer – Security Issues

Security Requirements

- Data confidentiality/integrity/freshness/authentication
- Secure time synchronization / localization
- Anonymity (hide location of sensor-observed aspects)
- Secure transmission between Sensors-Aggregators
 - Secure Web Services, SSL, X.509, PKIs, XML encryption
- Obstacles to Security
 - resource / computing constraints
 - communication reliability
 - unattended operation

<u>Optimality</u>: Safety – Efficiency "trade-off"

Sensors' type & Deployment scenario dependence

Processing Layer

Aggregators (due to sensors' limited resources)

- raw data processing
- data transformation to useful ("standard") formats
 - XML generation

> dynamic system configuration through XML schemas
 > sensors' capabilities/location/interfaces formal descriptions
 > specification of different data significance for users' apps
 > XML files re-transformation (XSLT Module)
 > XML files forwarding to the upper layer

>GSN (Open Source – Java)

user-defined wrappers (based in a data model)

incoming data encapsulation to the data mode

Abstraction of received "XMLs"
 Context capturing in varying conditions
 "Automatically" configured context annotation
 by application specific ontologies

This layer consists of

- an exported Web Service interface
- ontology Models
- Mapping and Semantic Rules
 - …and the corresponding actions / notifications
- the external Reasoning Server

Web Service interfacing module messages (from the lower layer) manipulation any arbitrary well-formed XML document knowledge is transferred

Ontology models

- ➢ Database Model → Jena internal graph engine
- \succ Ontological Model \rightarrow Triple statements
- \succ Knowledge Base \rightarrow Annotation (separate from data)
- Incoming XML files stored
 - transformation in another XML template

>Rules (syntactic and semantic homogeneity)

- > Knowledge conversion into semantic information \rightarrow KB
- >XML Mapping Rules
 - fetch data from XML message
 - storing in ontology model as ontology class individuals
- Semantic Rules
 - modify the ontology model
- Distinction inspired by RuleML
 - RDF-only and RDF-XML-combining subsets
 - common syntax
 - > different conditions & actions in each case

- Event-Condition-Action pattern followed
 - "on event if condition then action"

Mapping Rule

IF EXISTS /sensor/temperature/@value THEN INSERT INDIVIDUAL IN CLASS Temperature AND SET DATATYPE PROPERTY hasValue /sensor/temperature/@value

Consecutive Semantic Rule

- IF DATATYPE PROPERTY IN CLASS Temperature HAS VALUE GREATER THAN 40 AND DATATYPE PROPERTY IN CLASS Humidity HAS VALUE GREATER THAN 0.3 THEN Alert ("Surveillance area under unusual conditions!")
- Trigger Alerts based on KB awareness of the world
- Semantic-based intelligence added
 - reasoning procedures deduce implicit knowledge based on the current explicit facts

>Reasoning server

Knowledge Base is Ontology-Reasoner combination

- Reasoner (essential)
 - > OntoBroker, KAON2, Pellet etc.
 - DIG interoperability / Stand alone DIG servers
 - HTTP message exchanging with calling programs
 - Jena <u>supports</u> biding of external reasoners

"<u>choice is up to the user</u>"

Conclusions

Modular architecture for deploying WSNs

- ease end-user to take advantage of collected data
- facilitate developers
 - deploy new useful applications
 - exploit the Semantic Web advances
- add flexibility to the sensor world
- form associations over the raw data
- extract meaningful information and valuable results
- create specific management & notification rules

based on the nature of applications

Future Work

Implementation of different scenarios
 combine aggregation/security/processing methods

Evaluation of architecture's discrete components
 Scalability & Performance issues

Study energy efficiency trade-offs under

- proposed routing schemes
- data aggregation architectures

Questions?

Thank you for your attention !!

Stamatios Arkoulis

stark@cn.ntua.gr

