
Semantic Web 0 (0) 1–41 1
IOS Press

Bringing Relational Databases into the
Semantic Web: A Survey
Editor(s): Jie Tang, Tsinghua University, China
Solicited review(s): Zi Yang, Carnegie Mellon University, USA; Yuan An, Drexel University, USA; Ling Chen, University of Technology,
Sydney, Australia; Juanzi Li, Tsinghua University, China

Dimitrios-Emmanuel Spanos a,∗, Periklis Stavrou a and Nikolas Mitrou a

a National Technical University of Athens, School of Electrical & Computer Engineering, 9, Heroon Polytechneiou
str., 15773 Zografou, Athens, Greece
E-mail: {dspanos,pstavrou}@cn.ntua.gr,mitrou@cs.ntua.gr

Abstract. Relational databases are considered one of the most popular storage solutions for various kinds of data and they have
been recognized as a key factor in generating huge amounts of data for Semantic Web applications. Ontologies, on the other hand,
are one of the key concepts and main vehicle of knowledge in the Semantic Web research area. The problem of bridging the gap
between relational databases and ontologies has attracted the interest of the Semantic Web community, even from the early years
of its existence and is commonly referred to as the database-to-ontology mapping problem. However, this term has been used
interchangeably for referring to two distinct problems: namely, the creation of an ontology from an existing database instance
and the discovery of mappings between an existing database instance and an existing ontology. In this paper, we clearly define
these two problems and present the motivation, benefits, challenges and solutions for each one of them. We attempt to gather
the most notable approaches proposed so far in the literature, present them concisely in tabular format and group them under a
classification scheme. We finally explore the perspectives and future research steps for a seamless and meaningful integration of
databases into the Semantic Web.

Keywords: Relational Database, Ontology, Mapping, OWL, Survey

1. Introduction

Over the last decade and more, the Semantic Web
(SW) has grown from an abstract futuristic vision,
mainly existing in the head of its inspirer, Tim Berners-
Lee, into an ever approaching reality of a global web of
interlinked data with well-defined meaning. Standard
languages and technologies have been proposed and
are constantly evolving in order to serve as the build-
ing blocks for this “next generation” Web, relevant
tools are being developed and gradually reaching ma-
turity, while numerous real world applications already
give an early taste of the benefits the Semantic Web
is about to bring in various domains, as diverse as life

*Corresponding author. E-mail: dspanos@cn.ntua.gr.

sciences, environmental monitoring, cultural heritage,
e-Government and business process management. This
evident progress is the result of years-long research
and it comes as no surprise that, nowadays, Seman-
tic Web is perceived as a multidisciplinary research
field on its own, combining and gaining expertise from
other scientific fields, such as artificial intelligence, in-
formation science, algorithm and complexity theory,
database theory and computer networks, to name a few.

The participation of databases and their role in this
evolving Web setting has been investigated from the
very beginning of the Semantic Web conception, not
only because it was initially compared to “a global
database” [23], but also because this – new at the
time – research field could take advantage of the great
experience and maturity of the database field. How-
ever, the collaboration and exchange of ideas between

0000-0000/0-1900/$00.00 c⃝ 0 – IOS Press and the authors. All rights reserved

2 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

these two fields was not unidirectional: the database
community quickly recognized the opportunities aris-
ing from a close cooperation with the Semantic Web
field [113] and how the latter could offer solutions to
long-standing issues and provide inspiration to sev-
eral database subcommunities, interested in heteroge-
neous database integration and interoperability, dis-
tributed architectures, deductive databases, conceptual
modelling and so on.

Attempts to combine these two different worlds
originally focused on the reconciliation of the discrep-
ancies among the two most representative and domi-
nant technologies of each world: relational databases
and ontologies. This problem is also known as the
database to ontology mapping problem, which is sub-
sumed by the broader object-relational impedance
mismatch problem and is due to the structural differ-
ences among relational and object-oriented models.
Correspondences between the relational model and the
RDF graph model, which is a key component of the Se-
mantic Web, were also investigated and a W3C Work-
ing Group1 has been formed to examine this issue and
propose related standards. Nevertheless, the definition
of a theoretically sound mapping or transformation be-
tween the mentioned models is not an end on its own.
The motivation driving the consideration of mappings
among relational databases and Semantic Web tech-
nologies is multifold, leading to separate problems,
where mappings are discovered, defined and used in a
different way for each problem case.

Originally, database systems were considered by the
Semantic Web community as an excellent means for
efficient ontology storage [19], because of their known
and well evidenced performance benefits. This consid-
eration has led to the development and production of
several database systems, especially optimized for the
persistent storage, maintenance and querying of SW
data [47]. Such systems are informally known as triple
stores, since they are specifically tailored for the stor-
age of RDF statements, which are also referred to as
triples. This sort of collaboration between database and
Semantic Web specifies a data and information flow
from the latter to the former, in the form of population
of specialized databases, that often have some prede-
fined structure, with SW data.

A different, perhaps more interesting research line
takes as starting point an existing and fully functional

1RDB2RDF Working Group: http://www.w3.org/2001/
sw/rdb2rdf/

relational database and seeks ways to extract informa-
tion and render it suitable for use from a Semantic Web
perspective. In this case, motivation is shifted from
the efficient storage and querying of existing ontolog-
ical structures to problems, such as database integra-
tion, ontology learning, mass generation of SW data,
ontology-based data access and semantic annotation of
dynamic Web pages. These problems have been inves-
tigated in the relevant literature, each one touching on
a different aspect of the database to ontology mapping
problem. Unfortunately, this term has been freely used
to describe most of the aforementioned issues, creating
slight confusion regarding the goal and the challenges
faced for each one of them. Hence, in this paper, we
take a look at approaches that do one or more of the
following:

– create from scratch a new ontology based on in-
formation extracted from a relational database,

– generate RDF statements that conform to one or
more predefined ontologies and reflect the con-
tents of a relational database,

– answer semantic queries directly against a rela-
tional database, and

– discover correspondences between a relational
database and a given ontology

We attempt to define and distinguish between these
closely related but distinct problems, analyze meth-
ods and techniques employed in order to deal with
them, identify features of proposed approaches, clas-
sify them accordingly and present a future outlook for
this much researched issue.

The paper is structured as follows: Section 2 men-
tions the motivations and benefits of the database
to ontology mapping problem, while Section 3 gives
a short background and defines some terminology
of database systems and Semantic Web technologies.
Section 4 presents a total classification of relational
database to ontology mapping approaches and lists de-
scriptive parameters used for the description of each
approach. The structure of the rest of paper is largely
based on this taxonomy. Section 5 deals with the
problem of creating a new ontology from a relational
database and is further divided in subsections that dis-
tinguish among the creation of a database schema on-
tology (Section 5.1) and a domain-specific ontology
(Section 5.2) as well as among approaches that rely ex-
tensively on the analysis of the database schema (Sec-
tion 5.2.2) and approaches that do not (Section 5.2.1).
Section 6 investigates the problem of discovering and
defining mappings between a relational database and

http://www.w3.org/2001/sw/rdb2rdf/
http://www.w3.org/2001/sw/rdb2rdf/

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 3

one or more existing ontologies. Section 7 sums up the
main points of the paper, giving emphasis on the chal-
lenges faced by each category of approaches, while
Section 8 gives some insight on future directions and
requirements for database to ontology mapping solu-
tions.

2. Motivation and Benefits

The significance of databases from a Semantic Web
perspective is evident from the multiple benefits and
use cases a database to ontology mapping can be used
in. After all, the problem of mapping a database into
Semantic Web did not emerge as a mere exercise of
transition from one representation model to another. It
is important to identify the different motivations and
problems implicating interactions between relational
databases and SW technologies, in order to succeed a
clear separation of goals and challenges. That is not to
say that methods and approaches presented here cor-
respond strictly to one particular use case, as there are
quite a few versatile tools that kill two (or more) birds
with one stone. In the following, we present some of
the benefits that can be achieved from the interconnec-
tion of databases and ontologies.

Semantic annotation of dynamic web pages. An as-
pect of the Semantic Web vision is the transformation
of the current Web of documents to a Web of data. A
straightforward way to achieve this would be to anno-
tate HTML pages, which specify the way their con-
tent is presented and are only suitable for human con-
sumption. HTML pages can be semantically annotated
with terms from ontologies, making their content suit-
able for processing by software agents and web ser-
vices. Such annotations have been facilitated consid-
erably since the proposal of the RDFa recommenda-
tion2 that embeds in XHTML tags references to ontol-
ogy terms. However, this scenario does not work quite
well for dynamic web pages that retrieve their content
directly from underlying databases: this is the case for
content management systems (CMS), fora, wikis and
other Web 2.0 sites [14]. Dynamic web pages repre-
sent the biggest part of the World Wide Web, forming
the so called Deep Web [54], which is not accessible to
search engines and software agents, since these pages
are generated in response to a web service or a web

2RDFa Primer: http://www.w3.org/TR/
xhtml-rdfa-primer/

form interface request. It has been argued that, due to
the infeasibility of manual annotation of every single
dynamic page, a possible solution would be to “anno-
tate” directly the underlying database schema, insofar
as the web page owner is willing to reveal the structure
of his database. This “annotation” is simply a set of
correspondences between the elements of the database
schema and an already existing ontology that fits the
domain of the dynamic page content [125]. Once such
mappings are defined, it would be fairly trivial to gen-
erate dynamic semantically annotated pages with the
embedded content annotations derived in an automatic
fashion.

Heterogeneous database integration. The resolution
of heterogeneity is one of the most popular, long-
standing issues in the database research field, that re-
mains, to a large degree, unsolved. Heterogeneity oc-
curs between two or more database systems when they
use different software or hardware infrastructure, fol-
low different syntactic conventions and representation
models, or when they interpret differently the same
or similar data [114]. Resolution of the above forms
of heterogeneity allows multiple databases to be inte-
grated and their contents to be uniformly queried. In
typical database integration architectures, one or more
conceptual models are used to describe the contents
of every source database, queries are posed against
a global conceptual schema and, for each source
database, a wrapper is responsible to reformulate the
query and retrieve the appropriate data. Ontology-
based integration employs ontologies in lieu of con-
ceptual schemas and therefore, correspondences be-
tween source databases and one or more ontologies
have to be defined [126]. Such correspondences con-
sist of mapping formulas that express the terms of a
source database as a conjunctive query against the on-
tology (Local as view or LAV mapping), express on-
tology terms as a conjunctive query against the source
database (Global as view or GAV mapping), or state
an equivalence of two queries against both the source
database and the ontology (Global Local as view or
GLAV mapping) [80]. The type of mappings used in
an integration architecture influences both the com-
plexity of query processing and the extensibility of the
entire system (e.g. in the case of GAV mappings, query
processing is trivial, but the addition of a new source
database requires redefinition of all the mappings; the
inverse holds for LAV mappings). Thus, the discov-
ery and representation of mappings between relational
database schemas and ontologies constitute an integral

http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/xhtml-rdfa-primer/

4 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

part of a heterogeneous database integration scenario
[8].

Ontology-based data access. Much like in a database
integration architecture, ontology-based data access
(OBDA) assumes that an ontology is linked to a source
database, thus acting as an intermediate layer between
the user and the stored data. The objective of an OBDA
system is to offer high-level services to the end user
of an information system who does not need to be
aware of the obscure storage details of the underlying
data source [98]. The ontology provides an abstraction
of the database contents, allowing users to formulate
queries in terms of a high-level description of a domain
of interest. In some way, an OBDA engine resembles a
wrapper in an information integration scenario in that
it hides the data source-specific details from the up-
per levels by transforming queries against a concep-
tual schema to queries against the local data source.
This query rewriting is performed by the OBDA en-
gine, taking into account mappings between a database
and a relevant ontology describing the domain of in-
terest. The main advantage of an OBDA architecture is
the fact that semantic queries are posed directly against
a database, without the need to replicate its entire con-
tents in RDF.

Apart from OBDA applications, a database to ontol-
ogy mapping can be useful for semantic rewriting of
SQL queries, where the output is a reformulated SQL
query better capturing the intention of the user [21].
This rewriting is performed by substitution of terms
used in the original SQL query with synonyms and re-
lated terms from the ontology. Another notable related
application is the ability to query relational data using
as context external ontologies [45]. This feature has
been implemented in some database management sys-
tems3, allowing SQL queries to contain conditions ex-
pressed in terms of an ontology.

Mass generation of Semantic Web data. It has been
argued that one of the reasons delaying the Seman-
tic Web realization is the lack of successful tools and
applications showcasing the advantages of SW tech-
nologies [73]. The success of such tools, though, is
directly correlated to the availability of a sufficiently
large quantity of SW data, leading to a “chicken-and-
egg problem” [62], where cause and effect form a vi-
cious circle. Since relational databases are one of the
most popular storage media holding the majority of

3Oracle and OpenLink Virtuoso are the most representative ex-
amples.

data on the World Wide Web, a solution for the genera-
tion of a critical mass of SW data would be the, prefer-
ably automatic, extraction of relational databases’ con-
tents in RDF. This would create a significant pool of
SW data, that would alleviate the inhibitions of soft-
ware developers and tool manufacturers and, in turn,
an increased production of SW applications would be
anticipated. The term database to ontology mapping
has been used in the literature to describe such trans-
formations as well.

Ontology learning. The process of manually de-
veloping from scratch an ontology is difficult, time-
consuming and error-prone. Several semi-automatic
ontology learning methods have been proposed, ex-
tracting knowledge from free and semi-structured text
documents, vocabularies and thesauri, domain experts
and other sources [56]. Relational databases are struc-
tured information sources and, in case their schema
has been modelled following standard practices [51]
(i.e. based on the design of a conceptual model, such
as UML or the Extended Entity Relationship Model),
they constitute significant and reliable sources of do-
main knowledge. This is true especially for busi-
ness environments, where enterprise databases are fre-
quently maintained and contain timely data [129].
Therefore, rich ontologies can be extracted from rela-
tional databases by gathering information from their
schemas, contents, queries and stored procedures, as
long as a domain expert supervises the learning pro-
cess and enriches the final outcome. Ontology learn-
ing is a common motivation driving database to ontol-
ogy mapping when there is not an existing ontology
for a particular domain of interest, a situation that fre-
quently arose not so many years ago. Nevertheless, as
years pass by, ontology learning techniques are mainly
used to create a wrapping ontology for a source rela-
tional database in an ontology-based data access [110]
or database integration [29] context.

Definition of the intended meaning of a relational
schema. As already mentioned, standard database
design practices begin with the design of a conceptual
model, which is then transformed, in a step known as
logical design, to the desired relational model. How-
ever, the initial conceptual model is often not kept
alongside the implemented relational database schema
and subsequent changes to the latter are not propa-
gated back to the former, while most of the times these
changes are not even documented at all. Usually, this
results in databases that have lost the original intention
of their designer and are very hard to be extended or

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 5

re-engineered to another logical model (e.g. an object-
oriented one). Establishing correspondences between a
relational database and an ontology grounds the orig-
inal meaning of the former in terms of an expres-
sive conceptual model, which is crucial not only for
database maintenance but also for the integration with
other data sources [38], and for the discovery of map-
pings between two or more database schemas [7,49].
In the latter case, the mappings between the database
and the ontology are used as an intermediate step and
a reference point for the construction of inter-database
schema mappings.

Integration of database content with other data sources.
Transforming relational databases into a universal de-
scription model, as RDF aspires to be, enables seam-
less integration of their contents with information
already represented in RDF. This information can
originate from both structured and unstructured data
sources that have exported their contents in RDF, thus
overcoming possible syntactic disparities among them.
The Linked Data paradigm [60], which encourages
RDF publishers to reuse popular vocabularies (i.e. on-
tologies), to define links between their dataset and
other published datasets and reuse identifiers that de-
scribe the same real-world entity, further facilitates
global data source integration, regardless of the data
source nature. Given the uptake of the Linked Data
movement during the last few years, which has re-
sulted in the publication of voluminous RDF content
(in the order of billion statements) from several do-
mains of interest, the anticipated benefits of the inte-
gration of this content with data currently residing in
relational databases as well as the number of potential
applications harnessing it are endless.

3. Preliminaries

In this section, we make a short introduction on
some aspects of database theory and Semantic Web
technologies and define concepts that will be used
throughout the paper. We first focus on conceptual
and logical database design by visiting the Entity-
Relationship and relational models and then, we briefly
touch upon the RDF graph model and OWL ontology
language.

3.1. Database theory fundamentals

The standard database design process mainly con-
sists of three steps: a) conceptual, b) logical and c)

physical database design [102]. Conceptual design
usually follows after a preliminary phase where data
and functional requirements for potential database
users are analyzed. The output of the conceptual de-
sign is a conceptual schema, which describes from a
high-level perspective the data that will be stored in the
database and the constraints holding over it. The con-
ceptual schema is expressed in terms of a conceptual
model, the most widely used for this purpose being the
Entity-Relationship (ER) model, proposed by Peter
Chen [39]. The main features of the ER model are:

– entity sets, which are collections of similar ob-
jects, called entities.

– attributes associated with each entity set. An
attribute can be either single-valued or multi-
valued. All the entities belonging to a given entity
set are described by the same attributes. For every
entity set, a key is specified as a minimal set of
attributes, the values of which uniquely identify
an entity.

– relationship sets, which are sets of relationship
instances, connecting n entities with each other.
n is called the degree of the relationship set. A re-
lationship set can have descriptive attributes, just
like an entity set.

– cardinality constraints, which specify the mini-
mum and maximum number of entities from a
given entity set that can participate in a relation-
ship instance from a given relationship set.

– weak entity sets, which consist of weak entities,
the existence of which depends on the presence
of another entity, called the owner entity. The re-
lationship that connects a weak entity with its
owner entity is called identifying relationship.

Since its original definition, the ER model has been
further extended to include more characteristics that
enhanced its expressiveness. The extended version
of the ER model is known as the Extended Entity-
Relationship (EER) model, which allows the defini-
tion of subclass/superclass relationships among entity
sets and introduces, among others, the union type and
aggregation features. A formal definition of the ER
model can be found in [33].

Logical database design consists of building a log-
ical schema, which conforms to a representational
model that conceptually sits between the ER model
and the physical model describing the low-level stor-
age details of the database. Such models include the
network, hierarchical and relational models, the most

6 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

popular one being the latter, proposed by Edgar Codd
[41]. The main elements of the relational model are:

– relations, which intuitively can be thought of as
tables.

– attributes, which can be regarded as columns of a
table. Every attribute belongs to a given relation.
A minimal set of attributes that uniquely define
an element of a relation (i.e. a tuple or informally,
a row of the table) is a candidate key for that rela-
tion. In case there exist more than one candidate
keys, one of them is specified as the primary key
of the relation and is used for the identification of
this relation’s tuples. A foreign key for a given re-
lation, called parent relation, is a set of attributes
that reference a tuple in another relation, called
child relation.

– domains, which are sets of atomic constant val-
ues. Every attribute is related to a specific domain
and all of its values are members of this domain.

Again, a formal definition of the relational model can
be found in [3]. A relation schema is simply the name
of a relation, combined with the names and domains of
its attributes and a set of primary key and foreign key
constraints. A relation instance is a set of tuples that
have the same attributes as the corresponding relation
schema and satisfy the relation schema constraints.
A relational database schema is the set of relation
schemas for all relations in a database, while a rela-
tional database instance is a set of relation instances,
one for every relation schema in the database schema.

The transition from a conceptual schema expressed
in terms of the EER model to a relational schema is
performed according to well established standard algo-
rithms [51], that define correspondences between con-
structs of the two models. A very rough sketch of these
correspondences is presented in Table 1, which, al-
though incomplete, clearly reveals that the transforma-
tion of the EER model to the relational one is not re-
versible. This is the source of the database reverse en-
gineering problem i.e. the problem of recovering the
initial conceptual schema from the logical one.

The relational schema obtained from a direct trans-
lation of the conceptual schema is not always opti-
mal for data storage and may cause problems during
data update operations. Thus, the relational schema
is further refined in an additional normalization step,
which minimizes the redundancy of stored informa-
tion. In short, the normalization process decomposes
relations of a relational database schema, in order to
eliminate dependencies among relation attributes. The

most prominent types of dependencies met in rela-
tional schemas are functional, inclusion, multi-valued
and join dependencies. Depending on the type of de-
pendencies eliminated, the decomposed relations are
said to be in a specific normal form. Normal forms
based on functional dependencies are the first, the
second, the third and the Boyce-Codd normal form.
Fourth and fifth normal form are based on multi-valued
and join dependencies respectively4. Without going
into further detail, it suffices to say that normalization,
as an additional design step, incurs further complica-
tions to the database reverse engineering problem.

Much of the success of relational databases is due
to SQL, which stands for Structured Query Language
[1] and is the standard query language for relational
databases. Despite the fact that SQL does not strictly
follow Codd’s relational model5, it is relationally com-
plete, i.e. all of the relational algebra operations (e.g.
selection, projection, join, union) can be expressed as
an SQL query. SQL serves not only as a declarative
query language – the subset of SQL called Data Ma-
nipulation Language (DML) – but also as a database
schema definition language – the subset of SQL called
Data Definition Language (DDL). Thus, a relational
database schema can often be expressed as an SQL
DDL statement.

3.2. Semantic Web technologies

Moving on to the Semantic Web field, we begin with
RDF, probably one of the most significant SW build-
ing blocks. The RDF model is a graph-based model
based on the concepts of resources and triples or state-
ments. A resource can be anything that can be talked
about: a web document, a real-world entity or an ab-
stract concept and is identified by a URI (Uniform Re-
source Identifier). RDF triples consist of three compo-
nents: a subject, a predicate and an object. An RDF
triple is an assertion stating that a relationship, de-
noted by the predicate, holds between the subject and
the object. An RDF graph is a set of RDF triples that
form a directed labelled graph. Subjects and objects of
RDF triples are represented by nodes, while predicates

4For more information on dependency types and normalization,
see standard database theory textbooks [3,51,102].

5The SQL standard uses the terms table, column and row, instead
of the equivalent relational model terminology of relation, attribute
and tuple. It also allows the presence of identical rows in the same ta-
ble, a case frequently observed in derived tables that hold the results
of an SQL query.

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 7

Table 1
EER to relational model transformation

EER model Relational model

Entity set Relation

Attribute
Single-valued Attribute
Multi-valued Relation and foreign key

Binary
relationship set

1:1 or 1:N Foreign key or relation
M:N Relation

n-degree relationship set (n > 2) Relation and n foreign keys

Hierarchy of entity sets
One relation per entity set and foreign keys

or one relation for all entity sets

are arcs pointing from the subject to the object of the
triple. A special case of nodes are blank nodes, which
are not identified by a URI. An RDF graph can be se-
rialized in various formats, some of which are suitable
mainly for machine consumption (such as the XML-
based RDF/XML) and some are more easily under-
standable by humans (such as the plain text Turtle and
N3 syntaxes6).

Another fundamental concept not only for Seman-
tic Web, but information science in general, is the con-
cept of ontology. In the context of computer science,
several definitions have been given for ontology, from
Tom Gruber’s “ontology is an explicit specification of
a conceptualization”[58] and Nicola Guarino’s “ontol-
ogy is a logical theory accounting for the intended
meaning of a formal vocabulary”[59] to more concrete
formal ones [46,69]. The abundance of ontology defi-
nitions stems from the broadness of the term, which in-
cludes ontologies of several logic formalisms and rep-
resentation languages. Therefore, we slightly adapt the
definition of Maedche and Staab [86] which is general
enough to describe most ontologies. According to [86],
an ontology is a set of primitives containing:

– a set of concepts.
– a set of relationships between concepts, described

by domain and range restrictions.
– a taxonomy of concepts with multiple inheritance.
– a taxonomy of relationships with multiple inheri-

tance.
– a set of axioms describing additional constraints

on the ontology that allow to infer new facts from
explicitly stated ones.

Ontologies can be classified according to the subject
of the conceptualization: hence, among others, we can

6The most popular among the two, Turtle, has been put on W3C
Recommendation track (Working Draft: http://www.w3.org/
TR/turtle/).

distinguish between knowledge representation, upper-
level, domain and application ontologies [56]. Domain
(or domain-specific) ontologies are the most common
ones and provide a vocabulary for concepts of a spe-
cific domain of interest and their relationships. We will
see in Section 5 that there are approaches that map re-
lational databases to domain ontologies, where the do-
main can be either the relational model itself or the
topic on which the contents of the database touch.

Several ontology languages have been proposed for
the implementation of ontologies, but RDF Schema
(RDFS) and Web Ontology Language (OWL) are the
most prominent ones, especially in the Semantic Web
domain. RDFS is a minimal ontology language built
on top of RDF that allows the definition of:

– classes of individual resources.
– properties, connecting two resources.
– hierarchies of classes.
– hierarchies of properties.
– domain and range constraints on properties.

OWL, on the other hand, provides ontology design-
ers with much more complex constructs than RDFS
does and its popularity is constantly rising. As in
RDFS, the basic elements of OWL are classes, prop-
erties and individuals, which are members of classes.
OWL properties are binary relationships and are dis-
tinguished in object and datatype properties. Object
properties relate two individuals, while datatype prop-
erties relate an individual with a literal value. Hierar-
chies of classes and properties, property domain and
range restrictions, as well as value, cardinality, existen-
tial and universal quantification restrictions on the in-
dividuals of a specific class can be defined, among oth-
ers. OWL is based on Description Logics (DL) [15], a
family of languages that are subsets of first-order logic,
and offers several dialects of differing expressiveness.
Following the DL paradigm, statements in OWL can

http://www.w3.org/TR/turtle/
http://www.w3.org/TR/turtle/

8 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

be divided in two groups: the TBox, containing inten-
sional knowledge (i.e. axioms about classes and prop-
erties) and the ABox, containing extensional knowl-
edge (i.e. statements involving individuals). Daring an
analogy with database systems, TBox could be com-
pared to the database schema and ABox to the database
instance. The combination of TBox and ABox, to-
gether with a provider of reasoning services, is often
also called a knowledge base.

The first generation of the OWL language family,
also known as OWL 1, defined three OWL species:
OWL Lite, OWL DL and OWL Full, in order of
increasing expressiveness. However, these species
turned out not to be very practical for real-world ap-
plications. Therefore, the second generation of OWL
language, OWL 2, introduced three profiles of dif-
ferent expressiveness, with overlapping feature sets:
OWL 2 EL, OWL 2 RL and OWL 2 QL, each one
best suited for a different application scenario7. Fur-
thermore, OWL 2 DL and Full were defined as syntac-
tic extensions of OWL 1 DL and Full respectively in-
cluding additional features, such as punning, property
chains and qualified cardinality constraints.

The expressiveness of an ontology language influ-
ences the complexity of the reasoning algorithms that
can be applied to an ontology. Such algorithms can,
among others, infer new implicit axioms based on
explicitly specified ones, check for satisfiability of
classes, compute hierarchies of classes and properties
and check consistency of the entire ontology. As there
is a trade-off between the richness of an ontology lan-
guage and the complexity of reasoning tasks, there
is also an ongoing quest for ontology languages that
strike a balance between these two measures.

As with ontology definition languages, more than a
few ontology query languages exist, but the de facto
query language for RDF graphs is SPARQL. SPARQL
uses RDF graphs expressed in Turtle syntax as query
patterns and can return as output variable bindings
(SELECT queries), RDF graphs (CONSTRUCT and
DESCRIBE queries) or yes/no answers (ASK queries).
SPARQL is constantly evolving so as to allow update
operations as well8 and it has already been proved to
be as expressive as relational algebra [10].

An alternative way of modeling knowledge are
rules, which can sometimes express knowledge that

7For more details on OWL 2 Profiles, see http://www.w3.
org/TR/owl2-profiles/.

8SPARQL 1.1 Update: http://www.w3.org/TR/
sparql11-update/

can not expressed in OWL. The related W3C Recom-
mendation is RIF9 which introduces three dialects that
share a lot in common with several existing rule lan-
guages. The goal is to provide a uniform format for
exchange of rules of different kinds. Despite its Rec-
ommendation status, RIF has not been widely adopted
yet, and instead, the Semantic Web community seems
to favour the de facto standard of SWRL10, which al-
lows rules to be expressed as OWL axioms and thus,
be distributed as part of OWL ontologies.

4. A Classification of Approaches

The term database to ontology mapping has been
loosely used in the related literature, encompassing di-
verse approaches and solutions to different problems.
In this section, we give a classification which will help
us categorize and analyze in an orderly manner these
approaches. Furthermore, we introduce the descriptive
parameters to be used for the presentation of each ap-
proach.

Classification schemes and descriptive parameters
for database to ontology mapping methods have al-
ready been proposed in related work. The distinction
between classification criteria and merely descriptive
measures is often not clear. Measures that can act as
classification criteria should have a finite number of
values and ideally, should separate approaches in non
overlapping sets. Such restrictions are not necessary
for descriptive features, which can sometimes be qual-
itative by nature instead of quantifiable measures. Ta-
ble 2 summarizes classification criteria and descrip-
tive parameters proposed in the related literature, de-
spite the fact that some of the works mentioned have a
somewhat different (either narrower or broader) scope
than ours. As it can be seen from Table 2, there is a
certain level of consensus among classification efforts,
regarding the most prominent measures characterizing
database to ontology mapping approaches.

The taxonomy we propose and which we are go-
ing to follow in the course of our analysis is based on
some of the criteria mentioned in Table 2. The selec-
tion of these criteria is made so as to create a total clas-
sification of all relevant solutions in mutually disjoint
classes. In other words, we partition the database to

9Rule Interchange Format Overview: http://www.w3.org/
2005/rules/wiki/Overview

10Semantic Web Rule Language: http://www.w3.org/
Submission/SWRL/

http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/2005/rules/wiki/Overview
http://www.w3.org/2005/rules/wiki/Overview
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 9

Table 2
Classification criteria and descriptive parameters identified in literature

Work Classification Criteria Values Descriptive Parameters

Auer et al.
(2009) [14]a

Automation in the creation of mapping
Source of semantics considered
Access paradigm
Domain reliance

Automatic, Semi-automatic, Manual
Existing domain ontologies, Database, Database and User
Extract-Transform-Load (ETL), SPARQL, Linked Data
General, Dependent

Mapping representation
language

Barrasa Ro-
driguez,
Gomez-Perez
(2006) [17]

Existence of ontology
Architecture
Mapping exploitation

Yes (ontology reuse), No (created ad-hoc)
Wrapper, Generic engine and declarative definition
Massive upgrade (batch), Query driven (on demand)

–

Ghawi, Cullot
(2007) [55]

Existence of ontology
Complexity of mapping definition
Ontology population process
Automation in the creation of mapping

Yes, No
Complex, Direct
Massive dump, Query driven
Automatic, Semi-automatic, Manual

Automation in the instance
export process

Hellmann et al.
(2011) [61]

– – Data sourceb, Data exposi-
tion, Data synchronization,
Mapping language, Vocab-
ulary reuse, Mapping au-
tomation, Requirement of
domain ontology, Existence
of GUI

Konstantinou,
Spanos, Mitrou
(2008) [72]

Existence of ontology
Automation in the creation of mapping
Ontology development

Yes, No
Automatic, Semi-automatic, Manual
Structure driven, Semantics driven

Ontology language,
RDBMS supported, Se-
mantic query language,
Database components
mapped, Availability of
consistency checks, User
interaction

Sahoo et al.
(2009) [105]

Same as in Auer et al. (2009) with the addition of:
Query implementation
Data integration

SPARQL, SPARQL→SQL
Yes, No

Mapping accessibility, Ap-
plication domain

Sequeda et al.
(2009) [111]c

– – Correlation of primary and
foreign keys, OWL and
RDFS elements mapped

Zhao, Chang
(2007) [129]

Database schema analysis Yes, No Purpose, Input, Output,
Correlation analysis of
database schema elements,
Consideration of database
instance, application source
code and other sources

aIn this work, approaches are also divided in 4 categories: a) alignment, b) database mining, c) integration approaches and d) mapping
languages/servers.

bApart from relational data sources, this report reviews knowledge extraction from XML and CSV data sources as well.
cThis report investigates only approaches that create a new ontology by reverse engineering the database schema.

ontology mapping problem space in distinct categories
containing uniform approaches. The few exceptions
we come across are customizable software tools that
incorporate multiple workflows, with each one falling
under a different category.

We categorize solutions to the database to ontology
mapping problem to the classes shown in Figure 1.
Next to each class, we append the applicable motiva-
tions and benefits, as mentioned in Section 2. Associ-
ation of a specific benefit to a given class denotes that
there is at least one work in this class mentioning this
benefit.

The first major division of approaches is based on
whether an existing ontology is required for the perfor-
mance of a method. Therefore, the first classification
criterion we employ is the existence of an ontology
as a requirement for the mapping process, distinguish-
ing among methods that establish mappings between a
given relational database and a given existing ontology
(presented in Section 6) and methods that create a new
ontology from a given relational database (presented
in Section 5). In the former case, the ontology to be
mapped to the database should model a domain that is
compatible with the domain of the database contents in
order to be able to define meaningful mappings. This

10 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

Relational DBs to
Semantic Web

New ontology Existing ontology

Database schema
ontology

Domain-specific
ontology

No database reverse
engineering

Database reverse
engineering

√ ontology based data access
√ mass generation of SW data
√ heterogeneous database integration
√ integration with other data sources

√ semantic annotation of dynamic web pages
√ mass generation of SW data
√ definition of meaning of relational schema
√ heterogeneous database integration
√ ontology based data access
√ integration with other data sources√ semantic annotation of dynamic web pages

√ ontology based data access
√ mass generation of SW data
√ heterogeneous database integration

√ heterogeneous database integration
√ ontology learning
√ ontology based data access

Fig. 1. Classification of approaches.

is the reason why the ontology, in this case, is usually
selected by a human user who is aware of the nature of
data contained in the database. In the case of methods
creating a new ontology, the existence of a domain on-
tology is not a prerequisite, including use cases where
an ontology for the domain covered by the database is
not available yet or even where the human user is not
familiar with the domain of the database and relies on
the mapping process to discover the semantics of the
database contents.

The class of methods that create a new ontology
is further subdivided in two subclasses, depending
on the domain of the generated ontology. On the
one hand, there are approaches (presented in Section
5.1) that develop an ontology with domain the rela-
tional model. The generated ontology consists of con-
cepts and relationships that reflect the constructs of
the relational model, mirroring the structure of the in-
put relational database. We will call such an ontol-
ogy a “database schema ontology”. Since the gen-
erated ontology does not implicate any other knowl-
edge domain, these approaches are mainly automatic
relying on the input database schema alone. On the
other hand, there are methods that generate domain-
specific ontologies (presented in Section 5.2), depend-
ing on the domain described by the contents of the in-
put database.

The last classification criterion we consider is the
application of database reverse engineering tech-
niques in the process of creating a new domain-specific
ontology. Approaches that apply reverse engineering
try to recover the initial conceptual schema from the
relational schema and translate it to an ontology ex-
pressed in a target language (see Section 5.2.2). On
the other hand, there are methods that, instead of re-
verse engineering techniques, apply few basic transla-
tion rules from the relational to the RDF model (de-
tailed in Section 5.2.1) and/or rely on the human expert
for the definition of complex mappings and the enrich-
ment of the generated ontology model.

By inspection of Figure 1, we can also see that,
with a few exceptions, there is not significant corre-
lation between the taxonomy classes and the motiva-
tions and benefits presented in Section 2. This happens
because, as we argued above, this taxonomy catego-
rizes approaches based on the nature of the mapping
and the techniques applied to establish the mapping.
On the contrary, most benefits state the applications
of the already established mappings (e.g. database in-
tegration, web page annotation), which do not de-
pend on the mapping process details. Notable excep-
tions to the above observation are the ontology learn-
ing and definition of semantics of database contents
motivations. The former, by definition, calls for ap-
proaches that produce an ontology by analyzing a re-

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 11

lational database, while the latter calls for approaches
that ground the meaning of a relational database to
clearly defined concepts and relationships of an exist-
ing ontology.

Given the taxonomy of Figure 1 and the three clas-
sification criteria employed in it, we choose among the
rest of the features and criteria mentioned in Table 2
the most significant ones as descriptive parameters for
the approaches reviewed in this paper. The classifica-
tion criteria and descriptive parameters adopted in this
paper are shown in Figure 2 and elaborated in the fol-
lowing:

Level of automation. This variable denotes the ex-
tent of human user involvement in the process. Pos-
sible values for it are automatic, semi-automatic and
manual. Automatic methods do not involve the human
user in the process, while semi-automatic ones require
some input from the user. This input may be necessary
for the operation of the process, constituting an integral
part of the algorithm, or it may be optional feedback
for the validation and enrichment of the result of the
mapping process. In manual approaches, the mapping
is defined in its entirety by the human user without
any feedback or suggestions from the application. In
some cases, automation level is a characteristic that is
common among approaches within the same taxonomy
class. For instance, methods that create a new database
schema ontology are purely automatic, while the ma-
jority of approaches that map a relational database to
an existing ontology are manual, given the complexity
of the discovery of correspondences between the two.

Data accessibility. Data accessibility describes how
the mapping result is accessed. This variable is also
known in the literature as access paradigm, mapping
implementation or data exposition. Possible values
for this variable are ETL (Extract, Transform, Load),
SPARQL or another ontology query language and
Linked Data. ETL means that the result of the map-
ping process, be it an entire new ontology or a group
of RDF statements referencing existing ontologies, is
generated and stored as a whole in an external stor-
age medium (often a triple store but it can be an ex-
ternal file as well). In this case, the mapping result is
said to be materialized. Other terms used for ETL is
batch transformation or massive dump. An alternative
way of accessing the result of the mapping process is
through SPARQL or some alternative semantic query
language. In such a case, only a part (i.e. the answer
to the query) of the entire mapping result is accessed
and no additional storage medium is required since
the database contents are not replicated in a material-

ized group of RDF statements. The semantic query is
rewritten to an SQL query, which is executed and its
results are transformed back as a response to the se-
mantic query. This access mode is also known as query
driven or on demand and characterizes ontology-based
data access approaches. Finally, the Linked Data value
means that the result of the mapping is published ac-
cording to the Linked Data principles: all URIs use the
HTTP scheme and, when dereferenced, provide useful
information for the resource they identify11.

The data accessibility feature is strongly related to
the data synchronization measure, according to which,
methods are categorized in static and dynamic ones,
depending on whether the mapping is executed only
once or on every incoming user query, respectively. We
believe that the inclusion of data synchronization as
an additional descriptive feature would be redundant,
since the value of data accessibility uniquely deter-
mines whether a method maintains static or dynamic
mappings. Hence, an ETL value signifies static map-
pings, while SPARQL and Linked Data values denote
dynamic mappings.

Mapping language. This feature refers to the lan-
guage in which the mapping is represented. The val-
ues for this feature vary considerably, given that, un-
til recently, no standard representation language ex-
isted for this purpose and most approaches used propri-
etary formats. W3C recognized this gap and proposed
R2RML12 (RDB to RDF Mapping Language) as a rep-
resentation language for relational database to ontol-
ogy mappings. As R2RML is currently under develop-
ment, it is expected to be adopted by software tools in
the near future. The mapping language feature is ap-
plicable only to methods that need to reuse the map-
ping. A counterexample is the class of ontology learn-
ing methods that create a new domain ontology. Meth-
ods of this class usually do not represent the mapping
in any form, since their intention is simply the gen-
eration of a new domain ontology, having no interest
in storing correspondences with database schema ele-
ments.

Ontology language. This parameter states the lan-
guage on which the involved ontology is expressed.

11The use of the term Linked Data may be slightly misleading,
as both the ETL export of RDF data dumps and the SPARQL ac-
cess scheme are considered alternative ways of Linked Data pub-
lishing [60]. Nevertheless, we follow the convention of [14,61,105],
where the term Linked Data denotes an RDF access scheme based
on HTTP dereferenceable URIs.

12R2RML Specification: http://www.w3.org/TR/
r2rml/

http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/r2rml/

12 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

Existence of ontology
• Yes
• No

Ontology domain
• Relational model
• Other

Application of database
reverse engineering

• Yes
• No

Automation level
• Automatic
• Semi-automatic
• Manual

Data Accessibility
• ETL
• SPARQL
• Linked Data

Mapping Language
• SQL
• RDF/XML
• Custom language etc.

Ontology Language
• RDFS
• OWL dialect

Vocabulary Reuse
• Yes
• No

Software availability
• Yes
• No
• Commercial

Graphical user interface
• Yes
• No

Purpose
• Mass generation of SW data
• Ontology learning
• Ontology based data access

• Database integration etc .

Fig. 2. Classification criteria and descriptive parameters used.

Depending on the kind of approach, it may refer to the
language of the ontology generated by the approach or
to the language of the existing ontology required. Since
the majority of methods reviewed implicate Semantic
Web ontologies, the values for this feature range from
RDFS to all flavours of OWL. When the expressive-
ness of the OWL language used is not clear from the
description of the method, no specific profile or species
is mentioned.

Vocabulary reuse. This parameter states whether a
relational database can be mapped to more than one
existing ontologies or not. This is mainly true for man-
ual approaches where the human user is usually free to
reuse terms from existing ontologies at will. Reusing
terms from popular vocabularies is one of the prereq-
uisites for Semantic Web success and hence, is an im-
portant aspect for database to ontology mapping ap-
proaches. Of course, methods allowing for vocabulary
reuse do not enforce the user to do so, thus this vari-
able should not be mistaken with the existence of on-
tology requirement that was used as a classification cri-
terion in Figure 1. Once again, values of this param-
eter may be common among all approaches within a
certain class, e.g. methods generating a new database
schema ontology do not directly allow for vocabulary
reuse, since the terms used are specified a priori by the
method and are not subject to change.

Software availability. This variable denotes whether
an approach is accompanied with freely accessible
software, thus separating purely theoretical methods or
unreleased research prototypes from approaches pro-

viding practical solutions to the database to ontology
mapping problem. Therefore, this feature serves (to-
gether with the purpose feature) as an index of the
available software that should be considered from a
potential user seeking support for a particular problem.
Commercial software, which is not offering freely its
full functionality to the general public, is indicated ap-
propriately.

Graphical user interface. This feature applies to
approaches accompanied with an accessible software
implementation (with the exception of unavailable re-
search prototypes that have been stated to have a user
interface) and shows whether the user can interact with
the system via a graphical user interface.This param-
eter is significant especially for casual users or even
database experts who may not be familiar with Se-
mantic Web technologies but still want to bring their
database into Semantic Web. A graphical interface that
guides the end user through the various steps of the
mapping process and provides suggestions is consid-
ered as essential for inexperienced users.

Purpose. This is the main motivation stated by the
authors of each approach. This is not to say that the
motivation stated is the only applicable and that the ap-
proach cannot be used in some other context. Usually,
all the benefits and motivations showcased in Figure 1
apply to all tools and approaches of the same category.

We note once again that any of the above measures
could have been considered as a criterion for the def-
inition of an alternative taxonomy. However, we ar-
gue that the criteria selected lead to a partition of the

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 13

entire problem space in clusters of approaches that
present increased intra-class similarity. For example,
some works [14,17,55,105] categorize methods based
on the data accessibility criterion to static and dynamic
ones. This segregation is not complete though, as there
are methods that restrict themselves in finding corre-
spondences between a relational database and an on-
tology without migrating data to the ontology nor of-
fering access to the database through the ontology.
This was the main reason behind the omission of this
distinction in the classification of Figure 1. The values
of the above descriptive parameters for all approaches
mentioned in this paper are presented in Table 8.

Summing up the categories of methods recognized,
we will deal with the following, in the next sections of
the paper:

1. Creation of database schema ontology (Section
5.1)

2. Creation of domain-specific ontology without
database reverse engineering (Section 5.2.1)

3. Creation of domain-specific ontology with database
reverse engineering (Section 5.2.2)

4. Definition or discovery of mappings between
a relational database and an existing ontology
(Section 6)

5. Ontology Creation from Existing Database

In this section, we deal with the issue of generating
a new ontology from a relational database and option-
ally populating the former with RDF data that are ex-
tracted from the latter. Schematically, this process is
roughly shown on Figure 3. The mapping engine inter-
faces with the database to extract the necessary infor-
mation and, according to manually defined mappings
or internal heuristic rules, generates an ontology which
can also be viewed as a syntactic equivalent of an RDF
graph. This RDF graph can be accessed in three ways,
as described in Section 4: ETL, SPARQL or Linked
Data (lines 1, 3 and 2 in Figure 3, respectively). In
ETL, the RDF graph can be stored in a file or in a per-
sistent triple store and be accessed directly from there,
while in SPARQL and Linked Data access modes, the
RDF graph is generated on the fly from the contents
residing in the database. In these modes, a SPARQL
query or an HTTP request respectively are transformed
to an appropriate SQL query. Finally, the mapping en-
gine retrieves the results of this SQL query (this is not
depicted in Figure 3) and formulates a SPARQL so-

Relational
database

Mapping
engine

Mappings

Rules

File storage

Persistent
storage

1

2

2 3

SQL

3

Fig. 3. Generation of ontology from a relational database.

lution response or an appropriate HTTP response, de-
pending on the occasion.

Before we delve into the different categories of on-
tology creation approaches, we describe as briefly as
possible an elementary transformation method of a re-
lational database to an RDF graph proposed by Tim
Berners-Lee [22] that, albeit simple, has served as a
reference point for several ontology creation meth-
ods. This method has been further extended [19] so
as to produce an RDFS ontology and is also infor-
mally known as “table-to-class, column-to-predicate”,
but for brevity we are going to refer to it as the basic
approach throughout this paper. According to the basic
approach:

1. Every relation R maps to an RDFS class C(R).
2. Every tuple of a relation R maps to an RDF node

of type C(R).
3. Every attribute att of a relation maps to an RDF

property P (att).
4. For every tuple R[t], the value of an attribute att

maps to a value of the property P (att) for the
node corresponding to the tuple R[t].

As subjects and predicates of RDF statements must
be identified with a URI, it is important to come up
with a URI generation scheme that guarantees unique-
ness for distinct database schema elements. As ex-
pected, there is not a universal URI generation scheme,
but most of them follow a hierarchical pattern, much
like the one presented in Table 3, where for conve-
nience multi-column primary keys are not considered.
An important property that the URI generation scheme
must possess and is indispensable for SPARQL and
Linked Data access is reversibility, i.e. every generated
URI should contain enough information to recognize
the database element or value it identifies.

The basic approach is generic enough to be applied
to any relational database instance and to a large de-

14 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

Table 3
Typical URI generation scheme

Database Element URI Templatea Example

Database {base_URI}/{db}/ http://www.example.org/univ/
Relation {base_URI}/{db}/{rel} http://www.example.org/univ/staff/
Attribute {base_URI}/{db}/{rel}#{attr} http://www.example.org/univ/staff#address
Tuple {base_URI}/{db}/{rel}/{pk} = {pkval} http://www.example.org/univ/staff/id=278

aThe name of the database is denoted db, rel refers to the name of a relation, attr is the name of an attribute and pk is the name of
the primary key of a relation, while pkval is the value of the primary key for a given tuple of a relation.

gree automatic, since it does not require any input from
the human user, except from the base URI. However, it
accounts for a very crude export of relational databases
to RDFS ontologies that does not permit more complex
mappings nor does it support more expressive ontol-
ogy languages. Moreover, the resulting ontology looks
a lot like a copy of the database relational schema as
all relations are translated to RDFS classes, even the
ones which are mere artifacts of the logical database
design (e.g. relations representing a many-to-many re-
lationship between two entities). Other notable short-
comings of the basic approach include its URI gen-
eration mechanism, where new URIs are minted even
when there are existing URIs fitting for the purpose
and the excessive use of literal values, which seriously
degrade the quality of the RDF graph and complicate
the process of linking it with other RDF graphs [31].
Nevertheless, as already mentioned, several methods
refine and build on the basic approach, by allowing for
more complex mappings and discovering domain se-
mantics hidden in the database structure. Such meth-
ods are presented in the next subsections.

5.1. Generation of a database schema ontology

We first review the class of approaches that create a
new database schema ontology. Database schema on-
tologies have as domain the relational model and do
not model the domain that is referred to by the contents
of the database. In other words, a database schema on-
tology contains concepts and relationships pertaining
to the relational model, such as relation, attribute, pri-
mary key and foreign key and simply mirrors the struc-
ture of a relational database schema.

The process of generating such an ontology is en-
tirely automated, since all the information needed for
the process is contained in the database schema and
additional domain knowledge from a human user or
external information sources is not needed. Both ETL
and SPARQL based approaches are met in this cate-

gory regarding data accessibility, while the mapping it-
self is rarely represented in some form. This is due to
the fact that the correspondences between the database
schema and the generated ontology are straightfor-
ward, as every element of the former is usually mapped
to an instance of the respective class in the latter. For
example, a relation and each one of its attributes in
a database schema are mapped to instances of some
Relation and Attribute classes in the generated ontol-
ogy respectively, with the Relation instance being con-
nected with the Attribute instances through an appro-
priate hasAttribute property. The names of classes and
property in the above example are of course figurative,
as every approach defines its own database schema on-
tology.

An issue frequently arising when modeling a database
schema ontology is the need to represent, apart from
the database schema, the schema constraints that
are applied to the database contents. In the major-
ity of cases, the motivation is the check of database
schema constraints using ontology reasoning engines.
This requires not only representation of the database
schema but also description of the data itself. The
most straightforward and natural design pattern that
achieves this represents schema-level database con-
cepts as instances of the database schema ontology
classes and data is then represented as instances of the
schema layer concepts. This design makes use of more
advanced metamodeling ontology features. Informally,
metamodeling allows an ontology resource to be used
at the same time as a class, property and individual.
Metamodeling violates the separation restriction be-
tween classes, properties, individuals and data values
that is enforced in OWL (1/2) DL, the decidable frag-
ment of the OWL language, and leads to OWL Full
ontologies, which have been shown to be undecidable
[89]. The introduction of the punning feature in OWL
2 DL may allow different usages of the same term, e.g.
both as a class and an individual, but the standard OWL
2 DL semantics and reasoners supporting it consider

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 15

these different usages as distinct terms and thus, antic-
ipated inferences based on OWL (1/2) Full semantics
are missed.

Approaches that make use of metamodeling for
building a database schema ontology [95,121] create
OWL Full ontologies and do not go as far as to check
database constraints with appropriate ontology reason-
ers. This may be due to the popular misbelief that such
a task can be carried out only by reasoners that can
compute all OWL Full entailments of an ontology. On
the contrary, widely available OWL 2 RL reasoners13

or first order logic theorem proving systems may suf-
fice for the task [108].

The vast majority of methods in this group map
a relational database schema to strictly one ontol-
ogy and do not reuse terms from external vocabu-
laries, since their domain of interest is the relational
model. The obvious disadvantage of this group of ap-
proaches is the lack of data semantics in the gener-
ated database schema ontology, a fact that makes them
only marginally useful for integration with other data
sources. Thereby, some approaches complement the
database schema ontology with manually defined map-
pings to external domain-specific ontologies. These
ontology mappings may take the form of ontology
(rdfs:subClassOf and owl:equivalentClass) axioms
[74,75], SPARQL CONSTRUCT queries that output
a new RDF graph with terms from known ontolo-
gies [96] or SWRL rules that contain terms from the
database schema ontology in their body and terms
from popular ontologies in their head [53]. Such ap-
proaches, even indirectly, manage to capture the se-
mantics of database contents and thus, increase the
semantic interoperability among independently devel-
oped relational databases.

The most popular and dominant work in this cat-
egory is Relational.OWL [95], which is also reused
in other approaches and tools (e.g. ROSEX [43] and
DataMaster [93]). Relational.OWL embraces the de-
sign pattern commented above and makes use of the
OWL Full metamodeling features. Every relation and
attribute in the relational model gives rise to the cre-
ation of a corresponding instance of meta-classes Ta-
ble and Column. Data contained in the database is rep-

13OWL 2 RL Rules (http://www.w3.org/TR/
owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_
Graphs_using_Rules) offer a partial axiomatization of the
OWL 2 Full semantics and thus, can be used for developing
incomplete reasoning systems that extract some OWL 2 Full
entailments.

resented according to the rules of the basic approach:
every tuple of a relation is viewed as an instance of
a schema representation class, while tuple values as
viewed as values of properties-instances of the Column
class. This lack of separation among classes, properties
and individuals makes the produced ontology OWL
Full. Moreover, OWL classes denoting the concepts of
primary key and database schema are defined, as well
as OWL properties that tie together database schema
elements (such as the hasColumn property connecting
instances of the Table and Column classes and the ref-
erences property describing foreign key links). As with
most database schema ontologies, the generation of the
ontology is performed automatically, without any user
intervention. To overcome the lack of domain seman-
tics in the database schema ontology, the authors also
propose the use of Relational.OWL as an intermediate
step for the creation of an RDF graph that reuses terms
from external ontologies [96]. The RDF graph is pro-
duced as the result of SPARQL CONSTRUCT queries
executed on the Relational.OWL ontology. Apart from
standard ETL access, the addition of the RDQuery
wrapper system [97] allows for querying a relational
database through SPARQL queries using terms from
the Relational.OWL ontology.

DataMaster [93] is a tool that exports the schema
and the contents of a relational database in an ontology
using the Relational.OWL terminology. The novelty
though is that it also offers two alternative modeling
versions of Relational.OWL that manage to stay within
the syntactic bounds of OWL DL. In the first one,
the schema representation layer of Relational.OWL
is completely dropped and thereby, database relations
and attributes are translated to OWL classes and prop-
erties respectively (much like in the basic approach). In
the second one, it is the data representation layer that
is missing, since relations and attributes are translated
to instances of the Table and Column Relational.OWL
classes respectively, but the latter are not translated to
properties as well, therefore avoiding the metamodel-
ing feature used in Relational.OWL.

ROSEX [43] also uses a slightly modified version
of the Relational.OWL ontology to represent the re-
lational schema of a database as an OWL ontology,
thus ignoring the data representation layer of the latter.
The generated database schema ontology is mapped
to a domain-specific ontology that is generated auto-
matically by reverse engineering the database schema
(much like approaches of Section 5.2.2 do) and this
mapping is used for the rewriting of SPARQL queries
expressed over the domain ontology to SQL queries

http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules
http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules
http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

16 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

expressed over the relational database. Although it is
argued that the insertion of the database schema on-
tology as an intermediate layer between the domain
ontology and the database can contribute in track-
ing changes of the domain ontology as the database
schema evolves, it is not clear how this is actually
achieved.

An approach similar to Relational.OWL that pro-
duces a new database schema OWL ontology is
RDB2ONT [121]. The classes and properties de-
fined follow the same metamodeling paradigm as in
Relational.OWL, but the attempt to model relational
schema constraints as OWL constraints is erroneous.
Although relational schema constraints refer to the
contents of a relation, the authors translate these con-
straints by applying them on the schema-level OWL
classes, in an unsuccessful effort to avoid OWL Full.
Furthermore, it is not clear whether information from
the ER conceptual schema of the database is used in
the design of ontology, since the exact cardinalities
of relationships are assumed in this work to be given,
while it is known that they cannot always be deduced
by inspection of the relational schema alone.

Avoidance of metamodeling is successful in the
work of Kupfer and colleagues [75], where repre-
sentation of the database contents is not considered.
The output of this approach is an OWL-Lite ontol-
ogy reflecting the database schema, which is later
manually enriched with terms from a domain ontol-
ogy through the use of standard rdfs:subClassOf and
owl:equivalentClass axioms.

Automapper [53] (now part of the commercial Asio
SBRD tool) allows a relational database to be queried
through SPARQL using terms from a domain ontol-
ogy. Despite the fact that it is mainly an ontology-
based data access solution, we present it in this sec-
tion, since it involves a database schema ontology as
well. Automapper creates an OWL ontology enhanced
with SWRL rules to describe the relational schema
and express its constraints, such as the uniqueness of
the primary key or attribute datatype restrictions. The
generation of the schema ontology is automatic and
follows the basic approach of one class per relation
and one property per attribute. Automapper is the only
tool in this category that stores explicitly the mapping
among the database schema and the generated ontol-
ogy. The mapping is expressed in terms of a mapping
ontology heavily influenced by D2RQ [27], which is
described in Section 5.2. Once again, the construc-
tion of a database schema ontology is supplemented
with connections to a domain ontology, this time via

SWRL rules. SPARQL queries using terms from the
domain ontology are translated to SQL queries, taking
into account details of the stored mapping, such as the
schema-specific URI generation mechanism.

A similar workflow is described in the work of Dol-
bear and Hart [48], which focuses on spatial databases.
Their automatically generated data ontology is en-
riched with manually defined ontological expressions
that essentially correspond to SQL queries in the
underlying database. These complex expressions are
then linked through ordinary rdfs:subClassOf and
owl:equivalentClass axioms with an existing domain
ontology.

FDR2 [74] diverges considerably from the basic ap-
proach: every attribute of a relation is mapped to an
RDFS class, a relation corresponds to an RDF list
of these classes, while every pair of attributes of the
same relation is mapped to a so-called virtual prop-
erty. A database value is mapped as instance of its re-
spective “column class” and a tuple is represented in-
directly, with the interlinkage of values of the same
row via virtual properties. This design choice leads
to a certain amount of redundancy in the representa-
tion of database contents, especially in the case of re-
lations with n attributes, where n(n − 1) virtual at-
tributes are created. Correspondences of the created
database schema ontology with an existing domain on-
tology are defined manually as rdfs::subClassOf and
rdfs:subPropertyOf axioms.

An interesting summary of solutions for the trans-
formation of relational tuples and hence relational
schemas in RDFS ontologies is given in the work of
Lausen [78], with ultimate goal the identification of
the optimal scheme allowing for database constraint
checking, while staying clear of OWL Full solutions.
In this work, four different alternatives are presented.
The tuple-based mapping is essentially the same as the
basic approach, with the only difference being the use
of blank nodes for each tuple, instead of a generated
URI. The obvious disadvantage of this approach is the
encoding of all database values as literals, which ig-
nores the presence of foreign keys and leads to dupli-
cation of data in the output RDF graph. This is over-
come in value-based mapping, where URIs are gener-
ated for the values of key attributes and thus, “foreign
key” properties can directly reference these values in
the output RDF graph. The URI-based mapping pro-
duces a URI for every tuple of a relation, based on the
values of the primary key of the relation, pretty much
following the URI scheme of Table 3. Also, since pri-
mary key values are encoded in the tuple URI, the pri-

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 17

mary key of a relation is not explicitly mapped to an
RDF property. The drawback of this type of mapping
is the fact that foreign key constraints may also im-
plicitly be encoded as dependencies between URIs in
the RDF graph, in case the primary key of a relation
is also a foreign key to some other relation, a result
that is highly undesirable. The object-based mapping
sticks to the assignment of URIs to the values of key
attributes (as in the case of value-based mapping), but
foreign keys are represented as properties linking the
blank node identifiers of the tuples being linked via
the foreign key relationship. Again, foreign key con-
straints are difficult to be checked in a straightforward
way, since a property path should be followed in the
RDF graph in order to ensure for referential integrity.
Therefore, the solution adopted by Lausen is an RDFS
ontology that employs the value-based mapping ap-
proach and uses a custom vocabulary of classes and
properties for the denotation of primary and foreign
keys. This generated database schema ontology is in
fact used to check database constraints via execution
of appropriate SPARQL queries in [79].

Levshin [81] focuses on database schema constraint
checking as well. His approach constructs an OWL
ontology that follows the basic approach, but he also
enriches it with vocabulary for database concepts and
constraint checking. Special care is taken for null val-
ues, which are explicitly marked in the generated OWL
ontology, contrary to common practice, which simply
ignores database null values during the transformation
of database contents in RDF. Not null, primary, foreign
key and anti-key14 constraints are encoded as SWRL
rules, which are executed as soon as the target on-
tology is generated. Then, the source of violation of
these constraints, if any, is retrieved through SPARQL
queries. This approach is slightly different to the one
of Lausen and colleagues [79], in which only SPARQL
queries are used for the inspection of constraint vio-
lations. Both of these works distinguish constraints to
positive and negative ones, depending on whether the
presence or the lack of some data causes the violation
of the constraint. While Lausen and colleagues pro-
pose an extension to SPARQL so as to be able to check
the violation of all possible constraints, Levshin suc-
ceeds in doing so by definition of two distinct prop-
erties (violates and satisfies) for the two type of con-

14An anti-key constraint for a number of attributes in a relation is
satisfied if there is at least one pair of tuples with identical values for
these attributes.

straints and then, by combined use of SWRL rules with
SPARQL queries for spotting violations.

The complications arising when considering valida-
tion of database schema constraints through ontology
lenses stem from two fundamental differences in the
semantics of relational databases and description log-
ics ontologies. In database systems, both the closed
world assumption (CWA) and the unique name as-
sumption (UNA) hold, while DL ontologies follow the
open world assumption (OWA) and do not adopt UNA.
This means that, what is not stated explicitly in a rela-
tional database instance is known to be false, while in
a DL ontology, when something is not explicitly stated
it is simply not known whether it holds or not. Fur-
thermore, the lack of UNA in an ontology allows dif-
ferent names to refer to the same individual, in con-
trast with databases where every instance is identified
by a unique name. These differences in semantics be-
tween databases and ontologies have been extensively
investigated in the works of Motik and colleagues [90]
and Sirin and Tao [115], proposing different seman-
tics for the interpretation of ontology axioms that act
as integrity constraints. In fact, in [115], it is argued
that validation of database integrity constraints can
be performed through the execution of SPARQL con-
straints, therefore giving right to the efforts described
in [79,81].

Slight variations of the tuple-based mapping are pre-
sented in CROSS [35] and in the work of Chatter-
jee and Krishna [36]. CROSS exports an OWL rep-
resentation of a relational database schema and acts
as a wrapper for the data contained in the database,
i.e. it employs ETL access to the schema and query
based access to the data. For the data component of
the created ontology, CROSS adopts a variant of the
basic approach: one class for every database relation
is constructed, tuples are translated to instances of the
relation’s class, and values are translated to literals
that are not directly linked to the tuple instances, but
through an intermediate blank node instead. Database
schema constraints are interpreted as OWL axioms
and thus, their validity (with the exception of foreign
key constraints) can be checked with application of an
OWL reasoner. Chatterjee and Krishna [36] construct
an RDF graph that follows the principles of tuple-
based mapping and they enrich it with vocabulary per-
taining to the relational and ER models. No hints are
given though as to how this RDF representation could
be used for ensuring the validity of data with respect
to database schema constraints.

18 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

OntoMat-Reverse [125] is a semantic annotation
tool for dynamic web pages (now part of the OntoMat-
Annotizer tool), supporting two different workflow
scenarios: one for the annotation of the web presenta-
tion and another for direct annotation of the database
schema. While the latter workflow is a typical example
of a mapping discovery approach between a database
schema and an existing ontology (and is therefore de-
scribed in Section 6), the former involves the construc-
tion of a database schema ontology and is of interest
in the current Section. The database schema ontology
constructed in this approach is a simple RDFS ontol-
ogy that represents just the structure of the database.
Terms from this ontology are used in RDFS represen-
tations of SQL queries that, when executed, return val-
ues to be used in dynamically generated web pages and
which are also embedded in the web presentation. The
manual annotation that is then performed through a
graphical interface essentially relates an ontology term
to the column of the result set of an SQL query. In this
case, the constructed database schema ontology is used
as a mere provider of column identifiers for the anno-
tation task, thus one could question its necessity, since
simpler solutions could have been equally successful
for this task.

The relational schema ontology of Spyder15 is an-
other example of a database schema ontology. Spyder
is a tool that outputs a domain-specific ontology ac-
cording to manually specified mappings and therefore,
does not quite fit in this category. However, it is men-
tioned here because, as an intermediate step, it gen-
erates an ontology that describes a database schema.
This ontology provides a vocabulary for the database
terms that are going to be referred to in the specifica-
tion of mappings.

In Table 4, we summarize the design choices of
the mentioned approaches by explicitly presenting the
ontology constructs used for each of the relational
database schema elements (approach-specific ontology
vocabulary is marked with italics), including schema
constraints for attributes, such as domain and not null
constraints. We also state whether approaches consider
the enrichment of their generated database schema on-
tology with domain semantics, usually in the form of
correspondences with an external domain ontology.

15Spyder homepage: http://www.revelytix.com/
content/spyder-beta

5.2. Generation of a domain-specific ontology

Instead of creating an ontology that mirrors the
database instance and adding at a later stage domain
semantics, it is preferable to create directly an ontol-
ogy that refers to the subject domain of the contents of
the database. In this section, we deal with approaches
that create domain-specific ontologies, in contrast with
the database schema ontologies considered in Section
5.1. These domain-specific ontologies do not contain
any concepts or relationships that are related to the re-
lational or ER models but instead, concepts and rela-
tionships pertaining to the domain of interest that is
described by a relational database instance. Naturally,
the expressiveness of the generated ontology largely
depends on the amount of domain knowledge incorpo-
rated in the procedure. The two main sources of do-
main knowledge are the human user and the relational
database instance itself. This is the reason why we dis-
tinguish between approaches that mainly rely on re-
verse engineering the relational schema of a database
for the generation of a domain-specific ontology (but
can also accept input from a human user) and ap-
proaches that do not perform extensive schema analy-
sis but instead are mainly based on the basic approach
and optionally, input from a human expert.

5.2.1. Approaches not performing reverse
engineering

In this section, we take a look at approaches that
generate a new domain-specific ontology from an ex-
isting relational database without performing extensive
database schema analysis for the extraction of domain
semantics. Approaches of this category mainly use the
basic approach for exporting a relational database in-
stance to an RDFS ontology and, in the majority of
cases, allow a human user who is familiar with the
meaning of the database contents to define semanti-
cally sound mappings, expressed in a custom mapping
representation language. Approaches in this category
are usually accompanied with working software appli-
cations and this is one of the reasons why this category
of tools is by far the most popular and why several rel-
evant commercial tools also begin to emerge16.

The automation level of this category of tools varies
and depends on the level of involvement of the human
user in the process. Most of these tools support all of
the three possible workflows: from the fully automated

16A notable example is Anzo Connect: http://www.
cambridgesemantics.com/products/anzo_connect

http://www.revelytix.com/content/spyder-beta
http://www.revelytix.com/content/spyder-beta
http://www.cambridgesemantics.com/products/anzo_connect
http://www.cambridgesemantics.com/products/anzo_connect

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 19

Table 4
Overview of approaches of Section 5.1

Approach
Relational schema elements Link with

domain
ontology

Relation Attribute Tuple Primary Key Foreign Key Attribute Constraints

Automapper
[53]

Class Datatype prop-
erty

Instance of a re-
lation’s class

SWRL rule – owl:allValuesFrom and
owl:cardinality = 1 ax-
ioms for domain and not
null constraints respec-
tively

Yes

CROSS
[35]

Subclass of Row
class

Datatype prop-
erty

Instance of Row
class

Object property Object property rdfs:range restriction on
the attribute’s property
for domain constraints

No

DataMaster
[93]a

Class Datatype prop-
erty

Instance of a re-
lation class

– Instance of For-
eignKey class

– No

Instance of Ta-
ble class

Instance of Col-
umn class

– Instance of Pri-
maryKey class

references prop-
erty

rdfs:range restriction on
hasXSDType property
for domain constraints

No

FDR2 [74] RDF list of at-
tributes’ classes

Class RDF list of val-
ues

– – – Yes

Kupfer et
al. (2006)
[75]

Instance of Re-
lation class

Instance of At-
tribute class

– – isAssociatedWith
property

consistsOf property for
domain constraints

Yes

Lausen
(2007) [78]

Class Property Blank node Instance of Key
class

Instance of
FKey class

– No

Levshin
(2009) [81]

Subclass of Tu-
ple class

Datatype prop-
erty

Instance of a re-
lation’s class

SWRL rule SWRL rules rdfs:range restriction on
the attribute’s property
for domain constraints

No

OntoMat-
Reverse
[125]

Instance of Ta-
ble class

Instance of Col-
umn class

– Instance of Pri-
maryKey class

– type property for domain
constraints

Yes

RDB2ONT
[121]

Instance of the
Relation class

Property and in-
stance of the At-
tribute class

Instance of a re-
lation’s class

Instance of
PrimaryKeyAt-
tribute class

referenced At-
tribute property

isNullable and type
properties for not null
and domain constraints
respectively

Yes

Relational
OWL [95]

Class and in-
stance of Table
meta-class

Datatype prop-
erty and in-
stance of Col-
umn meta-class

Instance of a re-
lation’s class

Instance of Pri-
maryKey class

references prop-
erty

rdfs:range restriction on
the attribute’s property
for domain constraints

Yes [96]

ROSEX
[43]

Instance of Ta-
ble class

Instance of Col-
umn class

– Instance of Pri-
maryKey class

Instance of For-
eignKey class

– Yes

Spyder
[88]

Instance of Ta-
ble class

Instance of Col-
umn class

– Instance of Pri-
maryKey class

Instance of For-
eignKey class

dataType, defaultValue
and nullable properties
for domain, default
value and not null
constraints respectively

No

aDataMaster offers three alternative operation modes, one of them being the same as Relational.OWL and therefore not mentioned in the table.

standard basic approach with or without inspection and
fine-tuning of the final result by the human user to
manually defined mappings. Regarding data accessi-
bility, all three modes are again met among reviewed
approaches with a strong inclination towards SPARQL
based data access.

The language used for the representation of the map-
ping is particularly relevant for methods of this group.
Unlike the case of tools outputting a database schema
ontology, where the correspondences with database el-
ements are obvious, concepts and relationships of a
domain-specific ontology may correspond to arbitrar-
ily complex database expressions. To express these
correspondences, a rich mapping representation lan-
guage that contains the necessary features to cover

real world use cases is needed. Typical mapping rep-
resentation languages are able to specify sets of data
from the database as well as transformation on these
sets that, eventually, define the form of the resulting
RDF graph. It comes as no surprise that, until today,
with R2RML not being yet finalized, every tool used
to devise its own native mapping language, each with
unique syntax and features. This resulted in the lock-
in of mappings that were created with a specific tool
and could not be freely exchanged between different
parties and reused across different mapping engines. It
was this multilingualism that has propelled the devel-
opment of R2RML as a common language for express-
ing database to ontology mappings. Plans for adoption
of R2RML are already under way for some tools and

20 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

the number of adopters is about to increase in the near
future.

Since the majority of the tools we deal with in this
section rely on the basic approach for the generation
of an ontology, the output ontology language is usually
simple RDFS. The goal of these tools is rather to gen-
erate a lightweight ontology that possibly reuses terms
from other vocabularies for increased semantic inter-
operability, than to create a highly expressive ontology
structure. Vocabulary reuse is possible in the case of
manually defined mappings, but the obvious drawback
is the fact that, in order to select the appropriate on-
tology terms that better describe the semantics of the
database contents, the user should also be familiar with
popular Semantic Web vocabularies. The main motiva-
tion that is driving the tools of this Section is the mass
generation of RDF data from existing large quantities
of data residing in relational databases, that will in turn
allow for easier integration with other heterogeneous
data.

D2RQ [27] is one of the most prominent tools in
the field of relational database to ontology mapping.
It supports both automatic and user-assisted operation
modes. In the automatic mode, an RDFS ontology is
generated according to the rules of the basic approach
and additional rules, common among reverse engi-
neering methodologies, for the translation of foreign
keys to object properties and the identification of M:N
(many-to-many) relationships. In the manual mode,
the contents of the relational database are exported to
an RDF graph, according to mappings specified in a
custom mapping language also expressed in RDF. A
semi-automatic mode is also possible, in case the user
builds on the automatically generated mapping in order
to modify it at will. D2RQ’s mapping language offers
great flexibility, since it allows for mapping virtually
any subset of a relation in an ontology class and several
useful features, such as specification of the URI gen-
eration mechanism for ontology individuals or defini-
tion of translation schemes for database values. D2RQ
supports both ETL and query based access to the data.
Therefore, it can serve as a programming interface and
as a gateway that offers ontology-based data access
to the contents of a database through either Seman-
tic Web browsers or SPARQL endpoints. The engine
that uses D2RQ mappings to translate requests from
external applications to SQL queries on the relational
database is called D2R Server [25]. Vocabulary reuse
is also supported in D2RQ through manual editing of
the mapping representation files.

OpenLink Virtuoso Universal Server is an integra-
tion platform that comes in commercial and open-
source flavours and offers an RDF view over a rela-
tional database with its RDF Views feature [28], that
offers similar functionality to D2RQ. That is, it sup-
ports both automatic and manual operation modes. In
the former, an RDFS ontology is created following
the basic approach, while in the latter, a mapping ex-
pressed in the proprietary Virtuoso Meta-Schema lan-
guage is manually defined. This mapping can cover
complex mapping cases as well, since Virtuoso’s map-
ping language has the same expressiveness to D2RQ’s,
allowing to assign any subset of a relation to an RDFS
class and to define the pattern of the generated URIs.
ETL, SPARQL based and Linked Data access modes
are supported. One downside of both D2RQ and Virtu-
oso RDF Views is the fact that a user should familiarize
himself with these mapping languages in order to per-
form the desired transformation of data into RDF, un-
less he chooses to apply the automatic basic approach.

In the same vein, SquirrelRDF [109] and Spyder
create an RDFS view of a relational database, allow-
ing for the execution of SPARQL queries against it.
Both tools support all the workflows mentioned ear-
lier, that cover the entire range of automation levels.
Their automatic mode is typically based on the basic
approach and they define their own mapping represen-
tation languages, although very different in their ex-
pressiveness. SquirrelRDF’s mapping language is ex-
tremely lightweight and lacks several essential fea-
tures, as it only supports mapping relations to RDFS
classes and attributes to RDF properties. On the con-
trary, Spyder’s mapping language is much richer, while
the tool also supports a fair amount of R2RML fea-
tures. The main data access scheme for both tools is
SPARQL based, however SquirrelRDF does not sup-
port certain kinds of SPARQL queries that, when trans-
formed to SQL, prove to be very computationally ex-
pensive.

Tether [31] also outputs an RDF graph from a rela-
tional database. In this work, several shortcomings of
the basic approach are identified, some of them men-
tioned in the introduction of Section 5, and fixes for
these shortcomings are proposed. However, this work
is targeted specifically to cultural heritage databases
and the majority of the suggestions mentioned depend
largely on the database schema under examination and
the cultural heritage domain itself. The decision as to
whether the proposed suggestions are applicable and
meaningful in the database under consideration is to be
made by a domain expert.

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 21

As the basic approach is an integral part of the work-
flow of most tools in this category, the RDB2RDF
Working Group, which is responsible for the R2RML
specification, has been chartered in order to also pro-
pose a basic transformation of relational databases to
RDFS ontologies, called direct mapping [24]. The di-
rect mapping is supposed to standardize the informal
basic approach that has been used so far with slight
variations from various tools. Therefore, taking into
account the structure of a database, the direct mapping
produces an RDF graph that can be later modified to
achieve more complex mappings.

Triplify [14] is another notable RDF extraction tool
from relational schemas. SQL queries are used to se-
lect subsets of the database contents and map them to
URIs of ontology classes and properties. The mapping
is stored in a configuration file, the modification of
which can be performed manually and later enriched
so as to reuse terms from existing popular vocabular-
ies. The generated RDF triples can be either materi-
alized or published as Linked Data, thus allowing for
dynamic access. Triplify also accommodates for ex-
ternal crawling engines, which ideally would want to
know the update time of published RDF statements.
To achieve this, Triplify also publishes update logs in
RDF that contain all RDF resources that have been up-
dated during a specific time period, which can be con-
figured depending on the frequency of updates. The
popularity of the Triplify tool is due to the fact that
it offers predefined configurations for the (rather sta-
ble) database schemas used by popular Web applica-
tions. An additional advantage is the use of SQL query
for the mapping representation, which does not require
users to learn a new custom mapping language.

A tool that follows a somehow different rationale
is METAmorphoses [118]. METAmorphoses uses a
two-layer architecture for the production of a material-
ized RDF graph that can potentially reuse terms from
other popular ontologies. Apart from the typical map-
ping layer, where a mapping is defined in a custom
XML-based language, there is also a template layer,
where the user can specify in terms of another XML-
based language the exact output of the RDF graph by
reusing definitions from the mapping layer. This ar-
chitecture introduces unnecessary complexity for the
benefit of reusing mapping definitions, a feature that is
achieved much more elegantly in R2RML.

Another approach that needs to be mentioned at
this point is OntoAccess [63], which also introduces
a mapping language, R3M, for the generation of an
RDF graph from a relational database. Although R3M

shows considerably less features from other more ad-
vanced mapping languages, it contains all the neces-
sary information for propagating updates of the RDF
graph back to the database. OntoAccess offers data
access only through SPARQL and is one of the few
approaches that focus on the aspect of updating RDF
views and ensuring that database contents are modi-
fied accordingly. Nevertheless, it does not allow the se-
lection of an arbitrary subset of database contents like
most approaches do, but only supports trivial relation
to class and attribute and link relations (representing
many-to-many relationships) to property mappings.

A very crude overview of some of the features sup-
ported by the mapping definition languages of the tools
mentioned in this section is shown at Table 5. Among
the features included are:

– Support for conditional mappings, allowing for
the definition of complex mappings that go be-
yond the trivial “relation-to-class” case, by en-
abling the selection of a subset of the tuples of the
relation, according to some stated condition.

– Customization of the URI generation scheme for
class individuals, allowing for the definition of
URI patterns that may potentially use values from
attributes other than the primary key (therefore,
generalizing the basic approach URI generation
scheme).

– Application of transformation functions to at-
tribute values for the customization of the RDF
representation. Such transformations may include
string patterns combining two or more database
values or more complex SQL functions.

– Support for creation of classes from attribute val-
ues.

– Foreign key support, which interprets foreign key
attribute values as properties that link two indi-
viduals with each other, instead of simple literals.

A more in-depth comparison of mapping representa-
tion languages can be found at [64].

5.2.2. Approaches performing reverse engineering
The tools presented in Section 5.2.1 mainly rely on

the human user as a source of domain knowledge and
support him on the mapping definition task, by pro-
viding an initial elementary transformation often based
on the basic approach, that can be later customized.
On the contrary, approaches presented in this section
consider the relational database as the main source
of domain knowledge, complemented with knowledge
from other external sources and optionally, a human

22 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

Table 5
Comparison of language features for tools of Section 5.2.1

Language Conditional
mappings

URI genera-
tion scheme
for individu-
als

Transformation
functions
for attribute
values

Attribute val-
ues to classes

Foreign key
support

D2RQ [27]
√ √ √ √ √

METAmorphoses
[118]

√
– – –

√

R2RML
√ √ √ √ √

R3M [63] –
√

– –
√

Spyder
√ √ √ √ √

SquirrelRDF [109] – – – – –
Virtuoso Meta-
Schema Language
[28]

√ √ √ √ √

expert as well. Examples of such sources are database
queries, data manipulation statements, application pro-
grams accessing the database, thesauri, lexical reposi-
tories, external ontologies and so on.

The majority of methods in this category gain in-
spiration from traditional database reverse engineering
work. The process of reverse engineering the logical
schema of a database to acquire a conceptual one is
a well known problem of database systems research,
having attracted the interest of many researchers since
the early 90s. Since the nature of the problem is rather
broad, as it encompasses different logical and concep-
tual models, the related literature is extremely rich and
solutions proposed show considerable variance. Sev-
eral methodologies for the reverse engineering of a re-
lational database to a conceptual schema that follows
the Entity-Relationship or other object-oriented mod-
els have been proposed and have later been adapted
accordingly for providing solution to the relational
database to ontology mapping problem. Still though,
there exists no silver bullet for the accurate retrieval
of the conceptual schema that underpins a relational
database. This is due not only to the unavoidable loss
of semantics that takes place in the logical database
design phase, as different constructs of the ER model
map to elements of the same type in the relational
model, but also to the fact that database designers often
do not use standard design practices nor do they name
relations and attributes in a way that gives insight to
their meaning [101]. As a consequence, reverse engi-
neering a relational schema is more of an art and less
of a formal algorithm with guaranteed results.

Traditional relational database reverse engineering
solutions vary significantly because of the different as-

sumptions they are based on. These assumptions re-
fer to the normal form of the input relational schema,
the amount of information that is known with respect
to the relational schema, the target model the concep-
tual schema is expressed in and the external sources
of information used. Most methods assume that the in-
put relational schema is on third normal form (3NF),
which is the least strict normal form that allows for de-
composing relations into relations that preserve some
interesting properties [102]. Nevertheless, there are
methods that are less restrictive and are able to man-
age relational schemas in second normal form (2NF)
[103]. Moreover, some approaches do not consider as
given the candidate, primary and foreign keys of each
relation and therefore, try to discover as well func-
tional and inclusion dependencies by analyzing the
data of the database (e.g. [6,40]). The knowledge of
keys in a relational schema is a very important is-
sue, that greatly simplifies the reverse engineering pro-
cess. As such, it is indispensable for most approaches
(e.g. [67,87]), although exceptions do exist [101,103].
Some methodologies focus on specific aspects of the
conceptual model, such as cardinalities of participation
constraints in relationships [6] or generalization hierar-
chies [77], and attempt to identify them. Finally, meth-
ods differ with respect to the target output model con-
sidered: some extract an EER model (e.g. [40]), while
others target object-oriented models (e.g. [20,101]). As
hinted earlier, most reverse engineering methods are
semi-automatic, as they require validation from a hu-
man expert and can use additional information sources,
such as queries that are executed against the database
or relevant domain thesauri [70].

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 23

Despite the variance of the above methodologies,
they can all prove quite useful and relevant when con-
sidering the generation of a domain ontology from
relational databases, since Description Logics – on
which OWL is based – bear some similarities with
object-oriented models. The approaches mentioned in
this category accept as input a relational schema, usu-
ally in the form of SQL Data Definition Language
(DDL) statements, which contain information about
primary and foreign keys as well as domain constraints
for relational attributes, and generate a domain ontol-
ogy by mining information not only from the database
instance, but also from other sources of domain knowl-
edge. The generation of the ontology is based on a set
of heuristic rules, that essentially try to implement the
inverse transform of the logical database design pro-
cess, sketched in Table 1. The variety of assumptions
of traditional reverse engineering approaches that was
mentioned before is less evident here, as the vast ma-
jority of methodologies imply the existence of a 3NF
relational schema with full knowledge of keys and do-
main constraints, while the output is an ontology usu-
ally expressed in OWL or another DL language, in the
general case.

Apart from this typical line of work, there are also
a couple of other relevant groups of methods. The first
one considers an ER model as the input to the ontol-
ogy creation process, while the second one uses inter-
mediate models for the transition from the relational to
the ontology model. In the first case, the input for the
process is often not available, as conceptual schemas
usually get lost after the logical design phase or sim-
ply exist in the minds of database designers. There-
fore, the practical utility of these tools is arguable, al-
though they tend to generate more expressive ontolo-
gies, compared to approaches that work on a relational
schema. This is natural, since an ER model is a con-
ceptual model and most, if not all, of its features can
be represented in an OWL ontology. Approaches, such
as ER2WO [127], ERONTO [122], ER2OWL [52] and
the work of Myroshnichenko and Murphy [92] gen-
erate ontologies that cover the entire range of OWL
species – from OWL Lite to OWL Full – by applying
a set of rules that translate constructs of the ER model
to OWL axioms. Thus, these tools do not need to ap-
ply reverse engineering in the relational schema and
are restricted to a simple model translation. The sec-
ond group of approaches that deserves a mention uses
an intermediate model for the generation of an OWL
ontology from a relational database [13,65] and con-

stitutes an odd minority, compared to the large number
of approaches that directly create a domain ontology.

Approaches of this category are mainly automatic,
since they rely, to a large extent, on a set of general
rules that are applied on every possible input relational
schema. Of course, the result of this procedure cannot
be always correct and represent faithfully the mean-
ing of the relational schema and thereby, a human ex-
pert is often involved in the process to validate the re-
sulting ontology and, optionally, enrich it with links
to other domain ontologies either manually or semi-
automatically by following suggestions produced by
some algorithm [82]. In some cases, the discovery of
correspondences between the generated ontology and
other domain ontologies or lexical databases, such as
WordNet, is performed automatically (e.g. in [16] and
[68] respectively). An ER model can also be taken
into account for the validation of the resulting ontol-
ogy [4]. However, in contrast with early reverse en-
gineering methods, no approach utilizes queries and
SQL DML statements in order to extract more accu-
rate domain ontologies. A summary of the information
sources considered by approaches of this category for
the generation of a domain ontology is depicted in Ta-
ble 6.

Regarding data accessibility, all approaches output
a materialized ontology. This is due to the fact that
the main motivation of this group of approaches is the
learning of a new ontology that can be later used to
other applications and thus, needs to be materialized.
This is also reflected in the absence of mapping rep-
resentation for the majority of these approaches, since
the relational database is used as a knowledge source
in this context and the storage of mappings is of little
interest as they will not be reused. As far as the ontol-
ogy language of the resulting ontology, there seems to
be consensus about the use of OWL, with very few ex-
ceptions [11,84,117]. Vocabulary reuse is not possible
in this category of approaches, although some of them,
as mentioned before, try to establish links with existing
domain ontologies, in order to better ground the terms
of the newly generated ontology. A shortcoming that is
common among all approaches that apply reverse en-
gineering techniques is the structural similarity of the
generated ontology with the database schema.

In contrast with the tools of Section 5.2.1, which
export the database contents as RDF graphs and, in
fact, create instances of RDFS classes, approaches
that perform reverse engineering do not always popu-
late the generated ontology classes with data from the
database, thus restricting themselves in the generation

24 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

Table 6
List of input information sources for approaches of Section 5.2.2

Approach
Input sources

Schema Data Other
Sources

User

Astrova (2004)
[11]

√ √ √

Astrova (2009)
[12]

√

Buccella et al.
(2004) [29]

√ √

DB2OWL [55]
√

DM-2-OWL [5]
√

Jurić, Banek,
Skočir [68]

√
WordNet

Lubyte, Tessaris
(2009) [84]

√ √

R2O [116]
√

ER model for
validation

RDBToOnto [34]
√ √ √

ROSEX [43]
√

Shen et al. (2006)
[112]

√

SOAM [82]
√

Lexical
repositories

√

SQL2OWL [4]
√ √

ER model for
validation

√

L. Stojanovic, N.
Stojanovic, Volz
(2002) [117]

√ √

Tirmizi, Sequeda,
Miranker (2008)
[120]

√

of an ontology TBox. Approaches that do populate the
generated ontology with instances tend to materialize
them, with the exception of DB2OWL [55] and Ultra-
wrap [110] tools that offer dynamic SPARQL based
access.

The heuristic rules on which the ontology genera-
tion are often based on the separation of relations, ac-
cording to the number of attributes that constitute the
primary key, the number of foreign keys and the inter-
section of primary and foreign keys of a relation. In
most cases, these rules are described informally [29,
55,82,112,116,117] and sometimes, only through con-
venient examples that cannot be generalized [11,12].
Moreover, few methods yield semantically sound re-
sults, as they often contain faulty rules that misin-
terpret the semantics of the relational schema, while
in other cases, OWL constraints are misused. Two
of the most complete and formalized approaches are
SQL2OWL [4] and the work of Tirmizi and colleagues

[120], in which a set of Horn rules that covers all pos-
sible relation cases is proposed.

As the sets of rules are, to a large extent, repeated
across different approaches, we refrain from present-
ing separately each approach and instead present in-
formally the gist of the most significant categories of
rules proposed:

1. Default rules. These are the rules describing and
extending the basic approach for the case of the
OWL model, i.e. a relation maps to an OWL
class, non-foreign key attributes are mapped to
OWL datatype properties and foreign key at-
tributes are mapped to OWL object properties
with domain and range the OWL classes corre-
sponding to the parent and child relations respec-
tively. Moreover, a relation tuple maps to an in-
dividual of the respective OWL class.

2. Hierarchy rules. Such rules identify hierarchies
of classes in the relational schema. According
to them, when two relations have their primary
keys linked with a foreign key constraint, they
are mapped to two OWL classes, the one being
a superclass of the other. More specifically, the
class that corresponds to the parent relation is su-
perclass of the class that corresponds to the child
relation. This kind of rules often conflicts with
fragmentation rules.

3. Binary relationships rules. These rules identify
a relation that can be mapped to an OWL object
property. The primary key of such a relation is
composed of foreign keys to two other relations
that are mapped to OWL classes, while the re-
lation itself has no additional attributes. One of
these OWL classes constitutes the domain and
the other one the range of the generated object
property, with the choice being left to the hu-
man user who may supervise the procedure. In
order to overcome this obstacle, automatic meth-
ods often create two inverse object properties. In
case a relation has additional attributes, it cor-
responds to a binary relationship with descrip-
tive attributes. Nevertheless, as this feature is not
directly supported in OWL, it is mapped to an
OWL class with appropriate datatype properties,
much like in the default rules case.

4. Weak entity rules. These rules identify weak en-
tities and their corresponding owner entities. A
weak entity is usually represented with a relation
that has a composite primary key that contains a
foreign key to another relation, which represents

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 25

the owner entity. Such relations are still mapped
to OWL classes, however the semantics of the
identifying relationship that connects a weak en-
tity with its owner is difficult to be specified.
Some rules, in fact, choose to interpret the re-
lationship between the two relational as a pair
of inverse hasPart and isPartOf object proper-
ties. This kind of rules also conflicts with multi-
valued property rules.

5. n-ary relationships rules. These rules identify
n-ary relationships, usually in cases where the
primary key of a relation is composed of foreign
keys to more than two other relations that are
mapped to OWL classes. Essentially, such rules
are not different from default rules, given that n-
ary relationships cannot be directly expressed in
OWL, hence they are mapped to an OWL class.

6. Fragmentation rules. These rules identify rela-
tions that have been vertically partitioned and,
in fact, describe the same entity. Relations iden-
tified are mapped to the same OWL class. The
identification relies on the presence of the same
primary key in all implicated relations, much like
in the rules that discover hierarchies of classes.

7. Multi-valued property rules. These rules try
to identify relations that act as multi-valued at-
tributes. As there are quite a few ways to encode
a multi-valued attribute in a relational schema,
it is difficult to recognize such an attribute. This
kind of rules often assume that a relation that has
a composite primary key containing a foreign key
referencing a parent relation can be translated to
a datatype property with domain the class that
corresponds to the parent relation. As mentioned
before, these rules are based on the same assump-
tions with weak entity rules.

8. Constraint rules. These rules exploit additional
schema constraints, which are present in SQL
DDL statements. Such schema constraints in-
clude restrictions on non-nullable and unique at-
tributes, as well as domain constraints regard-
ing an attribute’s datatype. These are usually
mapped to appropriate OWL cardinality axioms
on datatype properties, inverse functional prop-
erties and either global (rdfs:range axioms) or
local universal quantification axioms (e.g. an
owl:allValuesFrom axiom applied to a specific
OWL class) respectively.

9. Datatype translation rules. These rules are es-
sentially translation tables defining correspon-
dences between SQL datatypes on the one hand

and XML Schema Types, which are typically
used as datatypes in RDF and OWL, on the other.
Such correspondences are defined in detail in the
SQL standard [2].

The rule categories used by every method perform-
ing reverse engineering for the generation of a domain-
specific ontology are shown in Table 7, together with a
note on whether the created ontology is populated with
instances from the database. It should be noted that
this categorization of rules is somewhat rough, thus
slight differences between approaches (e.g. how ap-
proaches handle specific constraints, such as primary
key, uniqueness, not null constraints etc.) cannot be re-
vealed in Table 7. A similar, more analytic overview
of a limited number of approaches, as well as a rather
technical table that gathers the precise RDFS and OWL
elements used by each approach can be found at [111].
Approaches that include conflicting rule categories, as
the ones pinpointed earlier, often rely on the decision
of the human user or introduce further premises in or-
der to differentiate between them. However, the va-
lidity of these proposals is arguable, since relational
schemas that serve as counterexamples can be easily
thought of.

It can be easily seen that the rules mentioned be-
fore only investigate the relational database schema
and do not consider database contents, as some re-
verse engineering approaches do by exploiting data
correlations in the database instance and employing
data mining techniques. Until now, very few meth-
ods belonging to this category have incorporated some
form of data analysis. Astrova [11] examines correla-
tion among key, non-key attributes and data in key at-
tributes between two relations, in order to extract var-
ious types of class hierarchies (e.g. both single and
multiple inheritance hierarchies). However, this work
is structured around informal convenient examples and
its results cannot be generalized.

A much more interesting effort is RDBToOnto [34],
which is the only tool of this category that proposes a
formal algorithm for exploiting data from the database
in order to extract class hierarchies. The main intuition
behind RDBToOnto is the discovery of attributes that
present the lowest variance of containing values. The
assumption is that these attributes are probably cate-
gorical attributes that can split horizontally a relation
R initially mapped to a class C(R), separating its tu-
ples in disjoint sets, which in turn can be mapped to
disjoint subclasses of the initial C(R) class. This data
analysis step is applied to attributes that contain some

26 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

Table 7
Rules applied to each approach of Section 5.2.2

Approach
Rule categories

Instance population
1 2 3 4 5 6 7 8 9

Astrova (2004) [11]
√ √ √ √ √ √

–
√

– Yes
Astrova (2009) [12]

√ √ √ √ √
– –

√ √
Yes

Buccella et al. (2004) [29]
√

–
√ √ √

– –
√ √

No
DB2OWL [55]

√ √ √
– – – –

√ √
Yes

DM-2-OWL [5]
√ √ √

– – – –
√ √

No
Jurić, Banek, Skočir [68]

√
–

√
– – – –

√ √
No

Lubyte, Tessaris (2009) [84]
√

–
√

–
√

– –
√

– No
R2O [116]

√ √ √ √ √
–

√ √
– No

RDBToOnto [34]
√ √ √

– – – – – – Yes
ROSEX [43]

√
–

√ √
– – – – – No

Shen et al. (2006) [112]
√ √ √

– –
√

–
√ √

Yes
SOAM [82]

√ √ √ √ √ √
–

√ √
Yes

SQL2OWL [4]
√ √ √

–
√ √ √ √ √

Optional
L. Stojanovic, N. Stojanovic, Volz (2002) [117]

√ √ √
–

√ √
–

√
– Yes

Tirmizi, Sequeda, Miranker (2008) [120]
√ √ √

–
√

– –
√ √

Yes

lexical clues in their name, which potentially can clas-
sify them as categorical attributes. RDBToOnto com-
bines this data analysis step with some of the most
common heuristic rules already mentioned and gener-
ates an OWL ontology.

As most of the approaches that belong to this group
are based on heuristics, their efficiency and ability
to interpret correctly the full meaning of a relational
schema is doubtful, since they cannot capture all possi-
ble database design practices and guess the original in-
tention of the designer. The most significant problems
with this kind of approaches are:

Identification of class hierarchies. Typically, hier-
archies in relational databases are modeled by the pres-
ence of a primary key that is also a foreign key refer-
ring to the primary key of another relation. We have al-
ready pointed out the fact that this design can also im-
ply that a relation has been vertically partitioned and
information on the same instance has been split across
several relations. However, this is only one of the pos-
sible alternative patterns that can be used for express-
ing generalization hierarchies in the relational model
[77]. As we have seen, identification of categorical at-
tributes and analysis of data may provide hints for min-
ing subclasses.

Interpretation of primary keys. Primary keys and
generally, attributes with unique values are usually
transformed to inverse functional datatype properties.
The introduction of such axioms leads to OWL Full
ontologies, which seem to intimidate ontology design-

ers. Despite the fact that state of the art reasoners, such
as Pellet, support inverse functional datatype proper-
ties, some methods, in order to avoid OWL Full, model
the primary key of a relation as a separate class and
translate the primary key constraint to an inverse func-
tional object property. It is also quite surprising that
the OWL 2 hasKey property is not considered by any
approach for the modeling of primary key attributes,
although this may be due to the fact that most methods
of this group were proposed before the introduction of
OWL 2. The owl:hasKey property also provides a nat-
ural solution for composite primary keys, the transfor-
mation of which has not been mentioned in any of the
methods reviewed.

Elicitation of highly expressive ontology axioms.
So far, no method exists that is able to map success-
fully expressive OWL features, such as symmetric and
transitive properties or even more advanced OWL 2
constructs like property chains, since these features
cannot be elicited by inspection of the database schema
alone. Furthermore, among the approaches reviewed,
there are divergent opinions on the expression of do-
main constraints for attributes. Some approaches sug-
gest translating these constraints to rdfs:range axioms
on the corresponding OWL datatype property, while
others suggest the use of universal quantification ax-
ioms for a specific class with the owl:allValuesFrom
construct.

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 27

Domain
ontology

Relational
database

Mapping
engineMappings1

1

Schema
matching
algorithm

Mapping
execution
module

Mappings

2

RDF Graph

Fig. 4. Mapping an existing ontology to a relational database.

6. Mapping a Database to an Existing Ontology

So far, we have come across tools and methods that
do not require a priori knowledge on existing ontolo-
gies. In this section, we examine approaches that take
as granted the existence of one or more ontologies and
either try to establish mappings between a relational
database and these ontologies or exploit manually de-
fined mappings for generating an RDF graph that uses
terms from these ontologies. These two alternatives are
depicted in Figure 4 (lines 2 and 1 respectively). The
underlying assumption adopted by all approaches is
that the selected ontologies model the same domain
as the one modeled by the relational database schema.
Therefore, on the one hand, there are approaches that
apply schema matching algorithms or augment reverse
engineering techniques as the ones discussed in Sec-
tion 5.2.2 with linguistic similarity measures, in or-
der to discover mappings between a relational database
and an appropriately selected ontology. These map-
pings can then be exploited in various contexts and ap-
plications, such as heterogeneous database integration
or even database schema matching [7,49]. On the other
hand, there are tools that share quite a lot with tools
of Section 5.2.1, receiving user-defined mappings be-
tween the database schema and one or more existing
ontologies and generating an RDF graph that essen-
tially populates ontologies with instance data from the
database.

Given that the database schema and the ontology are
developed independently, they are expected to differ
significantly and often, the domains modeled by the
two are not identical, but overlapping. Hence, map-
pings are usually not trivial or straightforward and, in

the general case, they are expressed as complex ex-
pressions and formulas. Thus, in any case, tools should
be able to discover and express complex mappings,
with the first task being particularly challenging and
very hard to be automated. As a consequence, the
vast majority of approaches in this category are ei-
ther manual or semi-automatic. In the latter case, some
user input is required by the matching algorithm, usu-
ally in the form of initial simple correspondences be-
tween elements of the database schema and the on-
tology. A purely automated procedure would need to
make oversimplifying assumptions on the lexical prox-
imity of corresponding element names in the database
schema and the ontology that are not always true.
Such assumptions tend to overestimate the overall effi-
ciency of mapping discovery methods, as for example
in MARSON [66] and OntoMat-Reverse [125].

As far as data accessibility is concerned, unlike all
categories of tools encountered so far, it is not appli-
cable to approaches that simply output a set of map-
ping expressions (line 2 in Figure 4), an observation
that prevented us from including data accessibility as a
classification criterion in Figure 1. For such tools, the
main aim is the generation of mappings and thereby,
they do not offer RDF dumps of database contents or
semantic query based access. These tools left aside,
this category supports all three data access scenarios.

Regarding the mapping language parameter, al-
though reusability of mappings is important for this
category of approaches, the same comment can be
made as in Section 5.2.1, i.e. every tool uses its own
proprietary mapping language. Again, expectations are
that the level of adoption of R2RML will increase in
the near future. All approaches support OWL ontolo-
gies, while vocabulary reuse is not possible for some
tools that require strictly one ontology to carry out
the mapping process. That being said, the vocabulary
reuse parameter is also not applicable to approaches
that merely discover mappings between a relational
database and an ontology, for the same reason as in
data accessibility. Another distinguishing feature of
tools in this category is the presence of a graphical
user interface in the majority of cases. Usually, the in-
terface allows the user to either graphically define the
mappings between the database and the ontology, sup-
ported by the visualization of their structure or validate
automatically discovered mappings.

Starting off with approaches where mappings are
manually defined, we mention R2O [18], a declarative
mapping language that allows a domain expert to de-
fine complex mappings between a relational database

28 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

instance and one or more existing ontologies. R2O is
an XML-based language that permits the mapping of
an arbitrary set of data from the database – as it con-
tains features that can approximate an SQL query – to
an ontology class. R2O’s expressiveness is comparable
to the most advanced mapping languages discussed in
Section 5.2.1, supporting features such as conditional
mappings or specification of URI generation schemes.
The ODEMapster engine [17] exploits mappings ex-
pressed in R2O in order to create ontology individuals
from the contents of the database allowing for either
materialized or query-driven access.

Manual mappings between a database schema and
a given ontology are defined in DartGrid [38] and
its successor Linked Data Mapper [130]. DartGrid
defines a typical database integration architecture,
a critical component of which is the definition of
mappings between each local database and a global
RDFS ontology. Correspondences between compo-
nents of the two models are defined via a graphi-
cal user interface and Local as View (LAV) map-
pings (database relations expressed as a conjunctive
query against the ontology) are generated in the back-
ground and stored in an RDF/XML format. DartGrid
also allows ontology-based data access, by perform-
ing translation of SPARQL queries to SQL, by ex-
ploiting the mappings defined. Linked Data Mapper
integrates DartGrid’s interface with Virtuoso Univer-
sal Server, therefore taking advantage of the capabili-
ties and rich features of the latter and enabling, among
others, ontology-based data access to the contents of a
relational database.

Graphical user interfaces for the manual definition
of mappings are also included in the VisAVis [71] and
RDOTE [123] tools. In both approaches, SQL is used
as the means for the specification of the data subset that
will be mapped to instances of an ontology class. In
the case of VisAVis, an SQL query is stored as a literal
value of a special purpose datatype property for the
corresponding ontology class, while in RDOTE the ap-
propriate SQL query is stored in a configuration file to-
gether with possible transformation functions applied
to elements of the database. VisAVis allows for query
based access, while RDOTE outputs an RDF graph
dump that uses classes and properties from the exist-
ing ontology. The results of SQL queries are also used
for the population of a template of an RDF/XML file
in the RDB2Onto tool [76].

The RDB2OWL framework [30] adopts a slightly
more complex road for the storage and execution of
complex mappings between a relational database and

one or more existing ontologies. RB2OWL stores the
mappings in an external database schema, especially
tailored for the purpose. This database schema is, in
fact, a mapping meta-schema and contains relations
and attributes that store the description of the database
schema and ontologies to be mapped as well as the
mappings themselves. RDB2OWL allows, similarly to
previously mentioned tools, for the selection of a data
subset from the database, thus simulating a basic SQL
query. Such SQL queries are in fact produced by SQL
meta-level queries and executed for the population of
the OWL ontologies considered.

Moving on to approaches that discover mappings in
a semi-automatic or even automatic way, we first men-
tion the MAPONTO tool [8]. MAPONTO is a semi-
automatic tool that receives as input from a human ex-
pert initial correspondences between relation attributes
and properties. The goal of MAPONTO is the extrac-
tion of LAV mappings of the form R(X̄) : −Φ(X̄, Ȳ),
where R(X̄) is some relation and Φ(X̄, Ȳ) is a con-
junctive formula over ontology concepts with X̄ ,Ȳ
being sets of variables or constants. Such mappings
define the meaning of database relations in terms of
an ontology and can be harnessed in a database in-
tegration context. In short, MAPONTO views the re-
lational schema as a graph (where foreign key links
are the connecting edges) and for each relation in it,
tries to build a tree that defines the semantics of the
relation. Foreign key links are traversed, adding vis-
ited relations to the tree, while the algorithm is aware
of the various relation structures that may represent
binary, n-ary relationships or weak entities (follow-
ing the typical reverse engineering rules mentioned
in Section 5.2.2). By taking into account information
initially provided by the user on the correspondences
between relation attributes and ontology properties,
MAPONTO is able to encode, in a straightforward
manner, the generated tree in the relational graph in
a conjunctive formula that uses ontology terms. With
slight modifications, the same algorithm can be used
for investigating the opposite direction, i.e. the discov-
ery of Global as view (GAV) mappings that express
concepts of the ontology as conjunctive queries over
the database. Such GAV mappings can then be directly
exploited for the population of an existing ontology
with database instances.

Another interesting approach in this group is the
one used in MARSON [66]. At first, relations are cat-
egorized on groups, according to whether they rep-
resent entities or relationships, following the reverse
engineering process of Chiang and colleagues [40].

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 29

Vectors of coefficients, called virtual documents, are
then constructed for every relation and attribute of the
database schema. The description of a relation takes
into account the description of relations connected to
it via foreign keys, while the description of attributes
incorporates the description of its parent relation and
other relations connected to the latter as well as the at-
tribute’s domain. Likewise, virtual documents for ev-
ery class and property of the ontology are constructed
and similarity between the elements of the database
schema and the ontology is computed with pairwise
calculation of their identifying vectors’ cosine dis-
tance. Essentially, the intuition is that the relational
schema is interpreted as a graph and some form of
elementary graph matching is performed. MARSON
adopts the simplest case, in which an element is de-
scribed only by its name, an obvious shortcoming that
eliminates the possibility of matching e.g. a relation
named academic_staff with a faculty class. As a next
step, MARSON uses these simple correspondences be-
tween relations and OWL classes in order to test the
consistency of the attribute-to-property mappings dis-
covered, while it exploits database data and ontology
individuals to discover more complex mappings, e.g.
finding the most appropriate categorical attribute of a
relation that splits it into subsets, which in turn cor-
respond to disjoint OWL subclasses of a superclass.
The discovery of the categorical attribute in a relation
is accomplished by computing the information gain (a
measure known from the information theory field) for
every attribute in a relation, a procedure that raises
questions regarding the computational efficiency of the
approach, as the number of string similarity checks
needed for the computation of the information gain
is directly related to the data volume of the database.
Nevertheless, MARSON is the only effort made so far
to completely automatize the process of discovering
mappings between a relational database and a given
ontology. As such, it relies on the assumption of lexical
proximity between names of elements in the database
and the ontology during the calculation of similarity
coefficients and the assumption of existence of a suf-
ficient number of individuals in the ontology, required
for the computation of information gain.

OntoMat-Reverse [125] is part of the OntoMat-
Annotizer semantic annotation framework, already
mentioned in Section 5.1, where scenario of the in-
direct annotation of web presentation was described.
The direct annotation of the database schema, from
which the data of a dynamic web page is retrieved, is
the second possible workflow scenario of this frame-

work. To this end, OntoMat-Reverse discovers map-
pings between the database schema and an existing
ontology by complementing the reverse engineering
rules of Stojanovic and colleagues [117] with a lex-
ical similarity metric. In essence, it recognizes spe-
cial structures in the database schema (in much the
same way as the methods in Section 5.2.2) and tries to
match them lexically with the classes and properties of
the existing ontology. The discovery of mappings then
trigger the population of the existing ontology with in-
stances from the database. The efficiency of this tool is
bounded by both the inherent inability of reverse engi-
neering methods to interpret correctly all database de-
sign choices and the reliance on lexical methods to find
the best match. Naturally, validation from an expert is
required in the end of the process.

Other tools that rely on lexical similarity mea-
sures between database and ontology elements are
RONTO [94], D2OMapper [128] and AuReLi [100].
In RONTO, linguistic similarity measures are com-
puted between corresponding structural elements of
a database and an ontology. Therefore, relation, non
foreign key and foreign key attribute names in the
database are compared to class, datatype and object
property names in the ontology, respectively, to find
the closest lexical matches, which are then validated by
the user. A similar matching approach is followed by
D2OMapper, which uses the ER2WO [127] translation
rules from an ER model to an OWL ontology. How-
ever, as these rules present some peculiarities, such as
the mapping of binary relationships to OWL classes,
it is arguable whether D2OMapper is able to discover
mappings between a relational database and an ontol-
ogy that has not been produced by the ER2WO tool.
AuReLi, on the other hand, uses several string similar-
ity measures to compare relation attributes with prop-
erties of several specified a priori ontologies. Further-
more, AuReLi tries to link database values with on-
tology individuals by issuing queries to the DBPedia
dataset17. The results of the algorithm are then pre-
sented to the human user for validation. AuReLi is
implemented as a D2R Server [25] extension offering
Linked Data and SPARQL data access.

In contrast with the string-based techniques de-
scribed in the previous paragraph, StdTrip [106] pro-
poses a structure-based framework that incorporates
existing ontology alignment tools, in order to find on-
tology mappings between a rudimentary ontology that

17DBPedia homepage: http://dbpedia.org/

http://dbpedia.org/

30 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

is generated from a relational database following the
basic approach and a set of given ontologies. As in Au-
ReLi, the results of the ontology alignment algorithm
are presented as suggestions to the human user, who
selects the most suitable ontology mapping.

We close this section by mentioning MASTRO
[32], a framework that enables the definition of map-
pings between a relational database and an ontology
and the issue of conjunctive queries expressed in EQL,
an SQL-like language. The MASTRO framework is
an ontology-based data access tool suite that reformu-
lates a conjunctive query expressed over a DL-LiteA
ontology18 to an SQL query that is evaluated by the
relational database. DL-LiteA has been proved to al-
low for tractable reasoning, while an algorithm has
been proposed for the reformulation of a conjunctive
query to SQL [98]. This algorithm differs consider-
ably from typical SPARQL to SQL rewriting methods
[37,44,50,83] that are employed by other tools offering
dynamic data access. MASTRO is also complemented
with the OBDA plugin for the popular ontology edi-
tor Protégé [99] that allows for the definition of GAV
mappings between a database and an ontology via a
graphical interface.

7. Discussion

Having gone through all different categories of ap-
proaches that pertain to the database to ontology map-
ping issue, we attempt to summarize and stress some
of the main points addressed throughout the paper re-
garding the main challenges faced by each group of ap-
proaches. We also argue on why a common evaluation
methodology for all proposed solutions is very diffi-
cult, if not impossible, to be developed, as some cate-
gories of approaches can only be evaluated in a quali-
tative basis, rather than in terms of an impartial quanti-
fied metric. Table 8 lists all database to ontology map-
ping tools and approaches mentioned throughout the
paper, together with values for each of the descriptive
parameters identified in Section 4.

Except for the points already discussed in Sections
5 and 6, we point out the limited software availabil-
ity, as less than half of the approaches are accompa-
nied by publicly available software and even fewer
among them are actively maintained and have reached
a certain level of maturity. We can also make an infor-

18DL-LiteA belongs to the DL-Lite family of languages, on which
the OWL 2 QL profile is based and is a proper subset of OWL DL.

mal observation with respect to the correlation of the
level of automation of approaches with their seman-
tic awareness, i.e. the amount of data semantics they
elicit correctly. This happens mainly because a human
expert is the most reliable source of semantics of a
database schema. Hence, purely manual tools, where
mappings are given by the human user, capture by defi-
nition the true meaning of the logical schema, whereas
purely automatic tools can rarely achieve such levels of
successful interpretation. Semi-automatic tools, which
interact with the human user, fall somewhere in be-
tween, thus we could say that there is some trade-off
between the level of automation of an approach and the
level of semantic awareness it achieves.

Going into further detail with respect to challenges
and efficiency of each category of approaches, we
could observe that the generation of a database
schema ontology (Section 5.1) is rarely a goal per
se, and the majority of methods reviewed corrobo-
rate this statement. This happens because a database
schema ontology is a faithful representation of the re-
lational schema (and in some cases, of the contents as
well) of a database. As such, it does not contain any
other domain semantics that are usually of interest to
a human user or an external application, which would
rather abstract the low-level organization details of a
database and interact with it in terms of higher-level
concepts. That is why most approaches complement
the generated ontology with additional axioms that
link its terms with concepts from a domain-specific
ontology and offer access to the database contents by
allowing an external human or software agent to issue
queries expressed over this domain-specific ontology.
The transformation of the issued semantic queries to
SQL queries over the database is performed by tak-
ing into account the defined correspondences between
the terms of the database schema ontology and the
domain-specific one. However, the benefits of adopt-
ing a database schema ontology as an in-between layer
instead of selecting a direct mapping definition among
a database and an ontology have not yet been shown in
practice for the task of query rewriting.

On the contrary, reasoning mechanisms are used in
cases where an ontological representation of a rela-
tional database is employed to check the validity of
database schema constraints. The challenge with this
kind of methods (e.g. [79,81]) is, on the one hand, to
bridge the gap between the closed world semantics of
database systems with the open world assumption of
ontologies and, on the other hand, to achieve an onto-
logical representation that does not increase the

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 31

Ta
bl

e
8:

D
es

cr
ip

tiv
e

pa
ra

m
et

er
s

of
ap

pr
oa

ch
es

re
vi

ew
ed

.

A
pp

ro
ac

h
L

ev
el

of
A

ut
om

a-
tio

n
D

at
a

A
cc

es
si

bi
lit

y
M

ap
pi

ng
L

an
-

gu
ag

e
O

nt
ol

og
y

L
an

-
gu

ag
e

Vo
ca

bu
la

ry
R

eu
se

So
ft

w
ar

e
A

va
ila

bi
lit

y
G

ra
ph

ic
al

U
se

rI
nt

er
fa

ce
M

ai
n

Pu
rp

os
e

A
st

ro
va

(2
00

4,
20

09
)[

11
,1

2]
Se

m
i-

au
to

m
at

ic
/

A
ut

om
at

ic
E

T
L

–
F-

L
og

ic
/

O
W

L
D

L
N

o
N

o
N

o
O

nt
ol

og
y

le
ar

ni
ng

A
uR

eL
i[

10
0]

Se
m

i-
au

to
m

at
ic

SP
A

R
Q

L
/L

in
ke

d
D

at
a

D
2R

Q
m

ap
pi

ng
la

ng
ua

ge
(c

us
to

m
R

D
F-

ba
se

d)

O
W

L
Y

es
N

o
Y

es
O

nt
ol

og
y-

ba
se

d
da

ta
ac

ce
ss

A
ut

om
ap

pe
r(

A
si

o
SB

R
D

)[
53

]
Se

m
i-

au
to

m
at

ic
SP

A
R

Q
L

cu
st

om
(R

D
F-

ba
se

d)
O

W
L

+S
W

R
L

N
o

C
om

m
er

ci
al

Y
es

O
nt

ol
og

y-
ba

se
d

da
ta

ac
ce

ss
B

uc
ce

lla
et

al
.

(2
00

4)
[2

9]
Se

m
i-

au
to

m
at

ic
E

T
L

–
O

W
L

D
L

N
o

N
o

N
o

D
at

ab
as

e
in

te
gr

at
io

n

C
R

O
SS

[3
5]

Se
m

i-
au

to
m

at
ic

cu
st

om
ac

ce
ss

pr
ot

oc
ol

–
O

W
L

Y
es

Y
es

N
o

D
at

ab
as

e
in

te
gr

at
io

n

D
2O

M
ap

pe
r[

12
8]

Se
m

i-
A

ut
om

at
ic

–
cu

st
om

re
pr

es
en

-
ta

tio
n

(X
M

L
fil

e)
O

W
L

D
L

N
o

N
o

N
o

Se
m

an
tic

an
no

ta
tio

n
of

w
eb

pa
ge

s
D

2R
Q

[2
7]

/
D

2R
Se

rv
er

[2
5]

A
ut

om
at

ic
/

M
an

-
ua

l
E

T
L

/S
PA

R
Q

L
/

L
in

ke
d

D
at

a
D

2R
Q

m
ap

pi
ng

la
ng

ua
ge

(c
us

to
m

R
D

F-
ba

se
d)

R
D

FS
Y

es
Y

es
N

o
O

nt
ol

og
y-

ba
se

d
da

ta
ac

ce
ss

D
ar

tG
ri

d
[3

8]
M

an
ua

l
SP

A
R

Q
L

cu
st

om
re

pr
es

en
-

ta
tio

n
(R

D
F/

X
M

L
fil

e)

O
W

L
D

L
N

o
N

o
Y

es
D

at
ab

as
e

in
te

gr
at

io
n

D
at

aM
as

te
r[

93
]

A
ut

om
at

ic
E

T
L

–
O

W
L

D
L

/F
ul

l
N

o
Y

es
Y

es
G

en
er

at
io

n
of

SW
da

ta
D

B
2O

W
L

[5
5]

A
ut

om
at

ic
E

T
L

/S
PA

R
Q

L
R
2

O
(c

us
to

m
te

xt
-

ba
se

d)
O

W
L

D
L

N
o

N
o

N
o

D
at

ab
as

e
in

te
gr

at
io

n

D
M

-2
-O

W
L

[5
]

A
ut

om
at

ic
E

T
L

–
O

W
L

Fu
ll

N
o

N
o

N
o

O
nt

ol
og

y
le

ar
ni

ng
D

ol
be

ar
,

H
ar

t
(2

00
8)

[4
8]

Se
m

i-
au

to
m

at
ic

SP
A

R
Q

L
–

O
W

L
D

L
N

o
N

o
N

o
Sp

at
ia

ld
at

ab
as

e
in

te
-

gr
at

io
n

FD
R

2
[7

4]
Se

m
i-

au
to

m
at

ic
E

T
L

–
R

D
FS

Y
es

N
o

N
o

D
at

ab
as

e
in

te
ro

pe
r-

ab
ili

ty
K

up
fe

r
et

al
.

(2
00

6)
[7

5]
Se

m
i-

au
to

m
at

ic
E

T
L

–
O

W
L

-L
ite

Y
es

N
o

N
o

D
at

ab
as

e
in

te
gr

at
io

n

Ju
ri

ć,
B

an
ek

,
Sk

oč
ir

[6
8]

A
ut

om
at

ic
E

T
L

–
O

W
L

Fu
ll

N
o

N
o

N
o

O
nt

ol
og

y
le

ar
ni

ng

L
au

se
n

(2
00

7)
[7

8]
A

ut
om

at
ic

E
T

L
–

R
D

FS
N

o
N

o
N

o
D

at
ab

as
e

in
te

gr
at

io
n

L
ev

sh
in

(2
00

9)
[8

1]
A

ut
om

at
ic

E
T

L
–

O
W

L
+S

W
R

L
N

o
N

o
N

o
C

on
st

ra
in

tv
al

id
at

io
n

L
in

ke
d

D
at

a
M

ap
-

pe
r[

13
0]

M
an

ua
l

SP
A

R
Q

L
V

ir
tu

os
o

M
et

a-
Sc

he
m

a
L

an
gu

ag
e

O
W

L
N

o
Y

es
Y

es
D

at
ab

as
e

in
te

gr
at

io
n

C
on

tin
ue

d
on

ne
xt

pa
ge

32 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

A
pp

ro
ac

h
L

ev
el

of
A

ut
om

a-
tio

n
D

at
a

A
cc

es
si

bi
lit

y
M

ap
pi

ng
L

an
-

gu
ag

e
O

nt
ol

og
y

L
an

-
gu

ag
e

Vo
ca

bu
la

ry
R

eu
se

So
ft

w
ar

e
A

va
ila

bi
lit

y
G

ra
ph

ic
al

U
se

rI
nt

er
fa

ce
M

ai
n

Pu
rp

os
e

L
ub

yt
e,

Te
ss

ar
is

(2
00

9)
[8

4]
Se

m
i-

au
to

m
at

ic
SP

A
R

Q
L

–
D

LR
-D

B
N

o
N

o
N

o
O

nt
ol

og
y-

ba
se

d
da

ta
ac

ce
ss

M
A

PO
N

TO
[8

]
Se

m
i-

A
ut

om
at

ic
–

cu
st

om
re

pr
es

en
-

ta
tio

n
(X

M
L

fil
e)

O
W

L
D

L
N

o
Y

es
Y

es
M

ea
ni

ng
de

fin
iti

on
of

da
ta

ba
se

M
A

R
SO

N
[6

6]
A

ut
om

at
ic

–
cu

st
om

re
pr

es
en

-
ta

tio
n

(X
M

L
fil

e)
O

W
L

D
L

N
o

N
o

N
o

D
at

ab
as

e
in

te
ro

pe
r-

ab
ili

ty
M

A
ST

R
O

[3
2]

/
O

B
D

A
pl

ug
in

fo
r

Pr
ot

ég
é

[9
9]

M
an

ua
l

SP
A

R
Q

L
cu

st
om

re
pr

es
en

-
ta

tio
n

D
L-

Li
te
A

/
O

W
L

2
Q

L
N

o
Y

es
Y

es
O

nt
ol

og
y-

ba
se

d
da

ta
ac

ce
ss

M
E

TA
m

or
ph

os
es

[1
18

]
M

an
ua

l
E

T
L

cu
st

om
(X

M
L

-
ba

se
d)

R
D

F
Y

es
Y

es
Y

es
G

en
er

at
io

n
of

SW
da

ta
O

nt
oA

cc
es

s
[6

3]
M

an
ua

l
SP

A
R

Q
L

U
pd

at
e

cu
st

om
(R

D
F-

ba
se

d)
R

D
FS

Y
es

Y
es

N
o

O
nt

ol
og

y-
ba

se
d

da
ta

up
da

te
O

nt
oM

at
-R

ev
er

se
[1

25
]

(O
nt

oM
at

-
A

nn
ot

iz
er

)

Se
m

i-
A

ut
om

at
ic

E
T

L
/F

-L
og

ic
F-

L
og

ic
F-

L
og

ic
N

o
Y

es
Y

es
Se

m
an

tic
an

no
ta

tio
n

of
w

eb
pa

ge
s

R
2O

[1
16

]
Se

m
i-

au
to

m
at

ic
E

T
L

–
O

W
L

D
L

N
o

N
o

N
o

D
at

a
in

te
gr

at
io

n
R
2

O
/

O
D

E
M

ap
-

st
er

[1
7]

M
an

ua
l

E
T

L
/

cu
st

om
qu

er
y

la
ng

ua
ge

(O
D

E
M

Q
L

)

R
2

O
(c

us
to

m
te

xt
-

ba
se

d)
O

W
L

Y
es

Y
es

N
o

O
nt

ol
og

y-
ba

se
d

da
ta

ac
ce

ss

R
D

B
2O

N
T

[1
21

]
A

ut
om

at
ic

E
T

L
–

O
W

L
Fu

ll
N

o
N

o
N

o
D

at
ab

as
e

in
te

gr
at

io
n

R
D

B
2O

W
L

[3
0]

M
an

ua
l

E
T

L
SQ

L
O

W
L

Y
es

N
o

N
o

G
en

er
at

io
n

of
SW

da
ta

R
D

B
To

O
nt

o
[3

4]
Se

m
i-

au
to

m
at

ic
E

T
L

–
O

W
L

N
o

Y
es

Y
es

O
nt

ol
og

y
le

ar
ni

ng
R

D
O

T
E

[1
23

]
M

an
ua

l
E

T
L

SQ
L

O
W

L
Y

es
Y

es
Y

es
G

en
er

at
io

n
of

SW
da

ta
R

el
at

io
na

l.O
W

L
[9

5]
/

R
D

Q
ue

ry
[9

7]

A
ut

om
at

ic
E

T
L

/S
PA

R
Q

L
–

O
W

L
Fu

ll
N

o
Y

es
Y

es
D

at
a

ex
ch

an
ge

in
a

P2
P

ne
tw

or
k

R
O

N
TO

[9
4]

Se
m

i-
au

to
m

at
ic

–
cu

st
om

re
pr

es
en

-
ta

tio
n

R
D

FS
/O

W
L

N
o

N
o

Y
es

G
en

er
at

io
n

of
SW

da
ta

R
O

SE
X

[4
3]

A
ut

om
at

ic
SP

A
R

Q
L

cu
st

om
on

to
lo

gy
O

W
L

D
L

N
o

N
o

N
o

O
nt

ol
og

y-
ba

se
d

da
ta

ac
ce

ss
Sh

en
et

al
.

(2
00

6)
[1

12
]

A
ut

om
at

ic
E

T
L

–
O

W
L

D
L

N
o

N
o

N
o

D
at

ab
as

e
in

te
gr

at
io

n

SO
A

M
[8

2]
Se

m
i-

A
ut

om
at

ic
E

T
L

–
O

W
L

D
L

N
o

N
o

N
o

O
nt

ol
og

y
le

ar
ni

ng
SQ

L
2O

W
L

[4
]

Se
m

i-
A

ut
om

at
ic

E
T

L
–

O
W

L
D

L
N

o
N

o
Y

es
O

nt
ol

og
y

le
ar

ni
ng

Sp
yd

er
A

ut
om

at
ic

/
M

an
-

ua
l

E
T

L
/S

PA
R

Q
L

cu
st

om
(R

D
F-

ba
se

d)
/R

2R
M

L
R

D
FS

Y
es

Y
es

N
o

O
nt

ol
og

y-
ba

se
d

da
ta

ac
ce

ss
Sq

ui
rr

el
R

D
F

[1
09

]
A

ut
om

at
ic

/
M

an
-

ua
l

SP
A

R
Q

L
cu

st
om

(R
D

F-
ba

se
d)

R
D

FS
Y

es
Y

es
N

o
O

nt
ol

og
y-

ba
se

d
da

ta
ac

ce
ss

C
on

tin
ue

d
on

ne
xt

pa
ge

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 33

A
pp

ro
ac

h
L

ev
el

of
A

ut
om

a-
tio

n
D

at
a

A
cc

es
si

bi
lit

y
M

ap
pi

ng
L

an
-

gu
ag

e
O

nt
ol

og
y

L
an

-
gu

ag
e

Vo
ca

bu
la

ry
R

eu
se

So
ft

w
ar

e
A

va
ila

bi
lit

y
G

ra
ph

ic
al

U
se

rI
nt

er
fa

ce
M

ai
n

Pu
rp

os
e

St
dT

ri
p

[1
06

]
Se

m
i-

au
to

m
at

ic
E

T
L

cu
st

om
re

pr
es

en
-

ta
tio

n
/S

Q
L

O
W

L
Y

es
N

o
Y

es
G

en
er

at
io

n
of

SW
da

ta
L

.
St

oj
an

ov
ic

,
N

.
St

oj
an

ov
ic

,
Vo

lz
(2

00
2)

[1
17

]

Se
m

i-
au

to
m

at
ic

E
T

L
–

F-
L

og
ic

/R
D

FS
N

o
N

o
N

o
Se

m
an

tic
an

no
ta

tio
n

of
w

eb
pa

ge
s

Te
th

er
[3

1]
Se

m
i-

A
ut

om
at

ic
E

T
L

–
R

D
FS

Y
es

N
o

N
o

G
en

er
at

io
n

of
SW

da
ta

Ti
rm

iz
i,

Se
qu

ed
a,

M
ir

an
ke

r
(2

00
8)

[1
20

]

A
ut

om
at

ic
E

T
L

–
O

W
L

D
L

N
o

N
o

N
o

G
en

er
at

io
n

of
SW

da
ta

Tr
ip

lif
y

[1
4]

M
an

ua
l

E
T

L
/L

in
ke

d
D

at
a

SQ
L

R
D

FS
Y

es
Y

es
N

o
G

en
er

at
io

n
of

SW
da

ta
U

ltr
aw

ra
p

[1
10

]
A

ut
om

at
ic

SP
A

R
Q

L
–

O
W

L
D

L
N

o
N

o
N

o
O

nt
ol

og
y-

ba
se

d
da

ta
ac

ce
ss

V
ir

tu
os

o
R

D
F

V
ie

w
s

[2
8]

A
ut

om
at

ic
/

M
an

-
ua

l
E

T
L

/S
PA

R
Q

L
/

L
in

ke
d

D
at

a
V

ir
tu

os
o

M
et

a-
Sc

he
m

a
L

an
gu

ag
e

R
D

FS
Y

es
Y

es
Y

es
O

nt
ol

og
y-

ba
se

d
da

ta
ac

ce
ss

V
is

AV
is

[7
1]

M
an

ua
l

R
D

Q
L

SQ
L

O
W

L
D

L
N

o
N

o
Y

es
M

ea
ni

ng
de

fin
iti

on
of

da
ta

ba
se

34 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

complexity of reasoning tasks beyond acceptable lev-
els. Methods dealing with this problem use a variety
of technologies, including rules, SPARQL queries as
well as the metamodeling and the inverse functional
datatype property features of OWL. However, there are
strong doubts regarding the practical value of such so-
lutions, given that validation of database schema con-
straints is already performed efficiently by database
management systems, does not constitute an impor-
tant database performance factor and it is highly un-
likely that solutions involving ontology reasoning en-
gines will prove more efficient. In fact, none of these
works offers a practical evaluation of their proposals,
which seem more like theoretical exercises examin-
ing the interactions of the relational model with OWL
ontologies. A suitable evaluation methodology would
probably need to assess the efficiency of each approach
with respect to the number of relations and constraints
in a database schema as well as the size of the data in
the database. For each test case, it could then calcu-
late the total time needed for constraint validation and
compare it with the time needed by a database man-
agement system.

Moving on to approaches that create a new domain
ontology (Section 5), the main challenges faced by
tools of this category include the definition of feature-
rich mapping languages that allow for a fully cus-
tomizable export of database contents to RDFS on-
tologies and for the storage of information required
by query rewriting algorithms, the search for efficient
query rewriting algorithms, the extraction of domain
knowledge from the database schema and the, as au-
tomated as possible, enrichment of the generated on-
tology with knowledge from other relevant domain
sources. However, these high-level goals depend on the
motivation considered by each approach and usually,
cannot be all sought after together. The first two of
them are normally faced by tools of Section 5.2.1, the
majority of which support dynamic query-based data
access, while the third one is the subject of approaches
presented in Section 5.2.2.

The definition of new expressive and user-friendly
database to ontology mapping languages has been a
goal for researchers in the past, but the standardiza-
tion process of R2RML that is currently under way has
already moved the focus away from research on new
languages. On the contrary, research on efficient query
rewriting algorithms still remains a challenge for tools
aiming at ontology-based data access and consti-
tutes an important success factor for them. In fact, the
emergence of efficient strategies for the transforma-

tion of SPARQL queries to equivalent SQL ones (e.g.
[37,50]) has led to the consideration of such database
to ontology mapping tools as an alternative to triple
stores, at least in the case of data that resides in re-
lational databases and is not native RDF. Since rela-
tional database management systems, due to their ro-
bust optimization strategies, outperform triple stores in
the query answering task by factors up to one hundred
[26], it is not surprising that, as long as SPARQL to
SQL rewriting algorithms do not introduce a large de-
lay, the combination of a relational database with a dy-
namic access database to ontology mapping tool and
will still outperform triple stores. This is true for at
least two such tools, namely D2R Server [25] and the
RDF Views feature of Virtuoso Universal Server [28],
which have been found to perform better than conven-
tional triple stores [26] for large datasets.

Although the efficiency of database to ontology
mapping systems that offer SPARQL data access can
be quantified by calculating the response time to a
query, it is not a trivial task to come up with an ob-
jective benchmark procedure for the fair and thor-
ough comparison of the performance of such systems.
Indeed, some of the evaluation methodologies that
have been proposed present contradictory results re-
garding the performance of mapping tools and native
triple stores with respect to SPARQL query answer-
ing [26,57]. A proper benchmarking methodology for
this category of tools usually involves the construc-
tion of data generators outputting datasets of various
sizes with desired properties and the proposal of se-
quences of queries of different complexity that are is-
sued against these datasets. The efficiency of a sys-
tem is then evaluated in terms of the response time for
a sequence of these queries or equivalently, in terms
of the number of queries that can be executed by the
system in a given time period. A procedure like the
above is implemented in the Berlin SPARQL Bench-
mark [26], which is one of the most acclaimed bench-
marks for storage systems that expose SPARQL end-
points and, as such, it also includes D2R Server and
Virtuoso RDF Views in its tests. Another similar no-
table benchmark is the SP2Bench SPARQL perfor-
mance benchmark [107], which can be applied to both
triple stores and SPARQL to SQL rewriting systems,
although none of the latter have been included in its
tests.

Another measure that is more relevant to approaches
that materialize the generated RDF graph is the time
needed for the production of an RDF statement. Two
of the factors that influence this measure is the to-

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 35

tal size and the complexity of the RDF graph gener-
ated [119]. Therefore, a suitable evaluation strategy
would, once again, involve the considerations of RDF
graphs of different sizes and complexities. However,
this measure is usually of little interest, especially to
approaches that are driven by the motivation of learn-
ing a domain ontology from a relational database and
reusing it in some other application. In such cases, the
production time of the ontology is not the key factor
for success, since this procedure will usually be per-
formed only once. What is more interesting for the
end user and, in the same time, challenging for the
tool is the elicitation of domain knowledge from the
relational database instance as well as knowledge ex-
traction from additional information sources in case
the relational database proves insufficient for the pur-
pose. As far as the above goals are considered, the effi-
ciency of tools that learn an ontology from a relational
database is very hard to be quantified and measured
objectively. Some systems measure the efficiency of
their approach by comparing the generated ontology
with an a priori known ER model corresponding to the
input relational database. The above rationale could
be somehow quantified, if pairs of relational database
schemas and “gold standard” ontologies were speci-
fied, with the latter capturing the intended domain se-
mantics contained in the database. Ideally, these test
pairs will need to include relational schemas following
non-standard design practices often met in real world
applications. The efficiency of an approach would then
be dependent on the amount of ontology constructs
identified as expected and on the total number of test
cases handled correctly.

Such a collection of test cases could also be em-
ployed for the evaluation of the performance of tools
that discover mappings between a relational database
and an ontology, presented in Section 6. In fact, a short
collection of pairs of database schemas and ontolo-
gies has been created for the purpose of the evalua-
tion of the MAPONTO tool [8] and has also been ap-
plied in the evaluation of MARSON [66]. This collec-
tion of schemas and ontologies together with the re-
lated collection gathered in the relational-to-RDF ver-
sion of THALIA testbed19 could serve as the basis for
the development of a full benchmark that will incorpo-

19Relational-to-RDF version of THALIA bench-
mark: http://esw.w3.org/topic/TaskForces/
CommunityProjects/LinkingOpenData/
THALIATestbed

rate more complex real world schemas and ontologies
from a variety of subject domains.

As the goal of mapping discovery tools is to au-
tomatize as much as possible the mapping discovery
process, a true challenge for them is to rely less on
lexical similarity techniques that pose restrictions on
their effectiveness and try to solve the synonym and
homonym problems with the aid of appropriate lexi-
cal reference sources and techniques that compare the
structure of the two models. As far as approaches that
support the manual definition of mappings between a
database and an existing ontology, also presented in
Section 6, the challenges are more or less the same
as the ones previously mentioned for the tools of Sec-
tion 5.2.1, i.e. the search for an expressive mapping
language and the efficient query rewriting for the case
of tools that support dynamic data access. In addition
to these high-level goals, tools of this kind also face
the challenge of presenting to the end user an intu-
itive graphical interface that will allow him to define
complex mappings, without requiring him to be famil-
iar with the underlying mapping representation lan-
guage. This is a very important prerequisite for the
widespread use of such tools, that unfortunately is usu-
ally not given enough attention, in favour of other more
tangible indicators of performance.

From the above, it becomes evident that a non-
superficial and thorough analysis of the efficiency of
reviewed approaches needs special care and cannot be
performed in the context of the current paper. An ad-
ditional practical difficulty to the ones already men-
tioned is the lack of a common standard application in-
terface for software implementations, with the excep-
tion of tools that expose a SPARQL endpoint, which
are easily pluggable to an external benchmark applica-
tion, regardless of the implementation’s programming
language. This is not true for other categories of tools,
which express their output in various forms, i.e. differ-
ent ontology languages and/or different mapping rep-
resentation formats, making their comparison cumber-
some. As already stated, the only relevant compara-
tive evaluation available is the Berlin SPARQL Bench-
mark and we encourage the interested reader to con-
sult [26] for the detailed performance analysis of D2R
Server and Virtuoso RDF Views. As far as evaluation
of other tool categories is concerned, we gathered at
one place20 all experimental datasets mentioned in the

20Test datasets for relational to ontology mapping: http://
orpheus.cn.ece.ntua.gr/rdb-rdf

http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/THALIATestbed
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/THALIATestbed
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/THALIATestbed
http://orpheus.cn.ece.ntua.gr/rdb-rdf
http://orpheus.cn.ece.ntua.gr/rdb-rdf

36 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

literature and used in the evaluation of individual ap-
proaches, hoping that they come of use for the evalua-
tion of new relevant methods.

8. Future Directions

In this paper, we tried to present the wealth of re-
search work marrying the worlds of relational databases
and Semantic Web. We illustrated the variety of dif-
ferent approaches and identified the main challenges
that researchers of this field face as well as proposed
solutions. We close this paper by mentioning some
problems that have only been lightly touched upon
by database to ontology mapping solutions as well as
some aspects that need to be considered by future ap-
proaches.

1. Ontology-based data update. A lot of ap-
proaches mentioned offer SPARQL based ac-
cess to the contents of the database. However,
this access is unidirectional. Since the emer-
gence of SPARQL Update that allows update
operations on an RDF graph, the idea of issu-
ing SPARQL Update requests that will be trans-
formed to appropriate SQL statements and exe-
cuted on the underlying relational database has
become more and more popular. Some early
work has already appeared in the OntoAccess
prototype [63] and the extensions on the D2RQ
tool, D2RQ/Update21 and D2RQ++ [104]. How-
ever, as SPARQL Update is still under devel-
opment and its semantics is not yet well de-
fined, there is some ambiguity regarding the
transformation of some SPARQL Update state-
ments. Moreover, only basic (relation-to-class
and attribute-to-property) mappings have been
investigated so far. The issue of updating rela-
tional data through SPARQL Update is similar to
the classic database view update problem, there-
fore porting already proposed solutions would
contribute significantly in dealing with this issue.

2. Mapping update. Database schemas and ontolo-
gies constantly evolve to suit the changing ap-
plication and user needs. Therefore, established
mappings between the two should also evolve,
instead of being redefined or rediscovered from
scratch. This issue is closely related to the pre-

21D2RQ/Update and D2R/Update Server homepage: http://
d2rqupdate.cs.technion.ac.il/

vious one, since modifications in either partic-
ipating model do not simply incur adaptations
to the mapping but also cause some necessary
changes to the other model as well. So far, only
few solutions have been proposed for the case
of the unidirectional propagation of database
schema changes to a generated ontology [42]
and the consequent adaptation of the mapping
[9]. The inverse direction, i.e. modification of
the database as a result of changes in the on-
tology has not been investigated thoroughly yet.
On a practical note, both database trigger func-
tions and mechanisms like the Link Maintenance
Protocol (WOD-LMP) from the Silk framework
[124] could prove useful for solutions to this is-
sue.

3. Generation of Linked Data. A fair number of
approaches support vocabulary reuse, a factor
that has always been important for the progress
of the Semantic Web, while a few other ap-
proaches try to discover automatically the most
suitable classes or properties from popular vo-
cabularies that can be mapped to a given database
schema. Nonetheless, these efforts are still not
adequate for the generation of RDF graphs that
can be smoothly integrated in the Linking Open
Data (LOD) Cloud22. For the generation of true
Linked Data, the real world entities that database
values represent should be identified and links
between them should be established, in con-
trast with the majority of current methods, which
translate database values to RDF literals. Lately,
a few interesting tools that handle the transfor-
mation of spreadsheets to Linked RDF data by
analyzing the content of spreadsheet tables have
been presented, with the most notable examples
being the RDF extension for Google Refine [85]
and T2LD [91]. Techniques as the ones applied
in these tools can certainly be adapted to the re-
lational database paradigm.

These aspects, together with the challenges enumer-
ated in Section 7, mark the next steps for database
to ontology mapping approaches. Although a lot of
ground has been covered during the last decade, it
looks like there is definitely some interesting road
ahead in order to seamlessly integrate relational databases
with the Semantic Web, turning it into reality at last.

22LOD Cloud diagram: http://richard.cyganiak.de/
2007/10/lod/

http://d2rqupdate.cs.technion.ac.il/
http://d2rqupdate.cs.technion.ac.il/
http://richard.cyganiak.de/2007/10/lod/
http://richard.cyganiak.de/2007/10/lod/

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 37

Acknowledgements

Dimitrios-Emmanuel Spanos wishes to acknowl-
edge the financial support of ‘Alexander S. Onas-
sis Public Benefit Foundation’, under its Scholarships
Programme.

References

[1] ISO/IEC 9075-1:2008, SQL Part 1: Framework
(SQL/Framework), International Organization for Standard-
ization, 27 January 2009.

[2] ISO/IEC 9075-14:2008, SQL Part 14: XML-Related Specifi-
cations (SQL/XML), International Organization for Standard-
ization, 27 January 2009.

[3] S. Abiteboul, R. Hull and V. Vianu, Foundations of
Databases, Addison-Wesley, New York City, NY, 1st ed.,
1995.

[4] N. Alalwan, H. Zedan and F. Siewe, Generating OWL Ontol-
ogy for Database Integration, in P. Dini, J. Hendler, J. Noll
et al., eds., Proceedings of the Third International Conference
on Advances in Semantic Processing (SEMAPRO 2009), pp.
22–31, IEEE, 2009.

[5] K. M. Albarrak and E. H. Sibley, Translating Relational &
Object-Relational Database Models into OWL Models, in
S. Rubin and S.-C. Chen, eds., Proceedings of the 2009 IEEE
International Conference on Information Reuse & Integration
(IRI 2009), pp. 336–341, IEEE, 2009.

[6] R. Alhajj, Extracting the Extended Entity-Relationship Model
from a Legacy Relational Database, Information Systems,
28(6), pp. 597–618, 2003.

[7] Y. An, A. Borgida, R. J. Miller and J. Mylopoulos, A Seman-
tic Approach to Discovering Schema Mapping Expressions,
in R. Chirkova and V. Oria, eds., Proceeding of 2007 IEEE
23rd International Conference on Data Engineering (ICDE
2007), pp. 206–215, IEEE, 2007.

[8] Y. An, A. Borgida and J. Mylopoulos, Discovering the Se-
mantics of Relational Tables through Mappings, Journal on
Data Semantics, VII, pp. 1–32, 2006.

[9] Y. An, X. Hu and I.-Y. Song, Round-Trip Engineering for
Maintaining Conceptual-Relational Mappings, in Z. Bellah-
sène and M. Léonard, eds., Advanced Information Systems
Engineering: 20th International Conference (CAiSE 2008),
Lecture Notes on Computer Science, vol. 5074, pp. 296–311,
Springer, 2008.

[10] R. Angles and C. Gutierrez, The Expressive Power of
SPARQL, in A. Sheth, S. Staab, M. Dean, M. Paolucci,
D. Maynard, T. Finin and K. Thirunarayan, eds., The Seman-
tic Web - ISWC 2008: 7th International Semantic Web Con-
ference, Lecture Notes in Computer Science, vol. 5318, pp.
114–129, Springer, 2008.

[11] I. Astrova, Reverse Engineering of Relational Databases
to Ontologies, in C. J. Bussler, J. Davies, D. Fensel and
R. Studer, eds., The Semantic Web: Research and Appli-
cations: First European Semantic Web Symposium (ESWS
2004), Lecture Notes in Computer Science, vol. 3053, pp.
327–341, Springer, 2004.

[12] I. Astrova, Rules for Mapping SQL Relational Databases to
OWL Ontologies, in M.-A. Sicilia and M. D. Lytras, eds.,
Metadata and Semantics, pp. 415–424, Springer, 2009.

[13] P. Atzeni, S. Paolozzi and P. Del Nostro, Ontologies and
Databases: Going Back and Forth, in Proceedings of the
4th International VLDB Workshop on Ontology-based Tech-
niques for Databases in Information Systems and Knowledge
Systems (ODBIS 2008), pp. 9 – 16, 2008.

[14] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann and D. Au-
mueller, Triplify: Light-Weight Linked Data Publication from
Relational Databases, in Proceedings of the 18th Interna-
tional Conference on World Wide Web (WWW’09), pp. 621–
630, ACM, 2009.

[15] F. Baader, D. L. McGuinness, P. F. Patel-Schneider and
D. Nardi, The Description Logic Handbook: Theory, Imple-
mentation, and Applications, Cambridge University Press,
2nd ed., 2007.

[16] M. Baglioni, M. V. Masserotti, C. Renso and L. Spin-
santi, Building Geospatial Ontologies from Geographical
Databases, in F. Fonseca, M. A. Rodríguez and S. Levashkin,
eds., GeoSpatial Semantics: Second International Conference
(GeoS 2007), Lecture Notes in Computer Science, vol. 4853,
pp. 195–209, Springer, 2007.

[17] J. Barrasa - Rodriguez and A. Gómez-Pérez, Upgrading Re-
lational Legacy Data to the Semantic Web, in Proceedings
of the 15th International Conference on World Wide Web
(WWW’06), pp. 1069–1070, ACM, 2006.

[18] J. Barrasa, O. Corcho and A. Gómez-Pérez, R2O, an Ex-
tensible and Semantically Based Database-to-Ontology Map-
ping Language, in Second International Workshop on Seman-
tic Web and Databases (SWDB 2004), 2004.

[19] D. Beckett and J. Grant, SWAD-Europe Deliverable 10.2:
Mapping Semantic Web Data with RDBMSes, avail-
able at: http://www.w3.org/2001/sw/Europe/
reports/scalable_rdbms_mapping_report/,
Technical Report, 2003.

[20] A. Behm, A. Geppert and K. R. Dittrich, On The Migration
of Relational Schemas and Data to Object-Oriented Database
Systems, in Proceeding of the 5th International Conference
on Re-Technologies for Information Systems (ReTIS 1997),
pp. 13–33, 1997.

[21] C. Ben Necib and J.-C. Freytag, Semantic Query Transforma-
tion Using Ontologies, in B. C. Desai and G. Vossen, eds.,
Proceedings of 9th International Database Engineering &
Application Symposium (IDEAS 2005), pp. 187–199, IEEE,
2005.

[22] T. Berners-Lee, Relational Databases on the Semantic Web,
available at: http://www.w3.org/DesignIssues/
RDB-RDF.html, 1998.

[23] T. Berners-Lee, Semantic Web Road map, available at:
http://www.w3.org/DesignIssues/Semantic.
html, 1998.

[24] A. Bertails and E. G. Prud’hommeaux, Interpreting Relational
Databases in the RDF Domain, in M. A. Musen and O. Cor-
cho, eds., Proceedings of the 2011 Knowledge Capture Con-
ference (K-CAP 2011), pp. 129–135, ACM, 2011.

[25] C. Bizer and R. Cyganiak, D2R Server - Publishing Relational
Databases on the Semantic Web, poster in 5th International
Semantic Web Conference (ISWC 2006), 2006.

[26] C. Bizer and A. Schultz, The Berlin SPARQL Benchmark, In-
ternational Journal On Semantic Web and Information Sys-

http://www.w3.org/2001/sw/Europe/reports/scalable_rdbms_mapping_report/
http://www.w3.org/2001/sw/Europe/reports/scalable_rdbms_mapping_report/
http://www.w3.org/DesignIssues/RDB-RDF.html
http://www.w3.org/DesignIssues/RDB-RDF.html
http://www.w3.org/DesignIssues/Semantic.html
http://www.w3.org/DesignIssues/Semantic.html

38 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

tems, 5(2), pp. 1–24, 2009.
[27] C. Bizer and A. Seaborne, D2RQ - Treating non-RDF

Databases as Virtual RDF Graphs, poster in 3rd International
Semantic Web Conference (ISWC 2004), 2004.

[28] C. Blakeley, Virtuoso RDF Views Getting Started Guide,
available at: http://www.openlinksw.co.uk/
virtuoso/Whitepapers/pdf/Virtuoso_SQL_
to_RDF_Mapping.pdf, OpenLink Software, 2007.

[29] A. Buccella, M. R. Penabad, F. R. Rodriguez, A. Farina and
A. Cechich, From Relational Databases to OWL Ontologies,
in Proceedings of 6th Russian Conference on Digital Li-
braries (RCDL 2004), 2004.

[30] G. Būmans and K. Čerāns, RDB2OWL : a Practical Approach
for Transforming RDB Data into RDF/OWL, in A. Paschke,
N. Henze and T. Pellegrini, eds., Proceedings of the 6th In-
ternational Conference on Semantic Systems (I-SEMANTICS
2010), ACM, 2010.

[31] K. Byrne, Having Triplets - Holding Cultural Data as RDF,
in M. Larson, K. Fernie, O. J. and J. Cigarran, eds., Proceed-
ings of the ECDL 2008 Workshop on Information Access to
Cultural Heritage, 2008.

[32] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
A. Poggi, M. Rodriguez-Muro, R. Rosati, M. Ruzzi and D. F.
Savo, The MASTRO System for Ontology-based Data Ac-
cess, Semantic Web Journal, 2(1), pp. 43–53, 2011.

[33] D. Calvanese, M. Lenzerini and D. Nardi, Unifying Class-
Based Representation Formalisms, Journal of Artificial Intel-
ligence Research, 11, pp. 199–240, 1999.

[34] F. Cerbah, Mining the Content of Relational Databases to
Learn Ontologies with Deeper Taxonomies, in Y. Li, G. Pasi,
C. Zhang, N. Cercone and L. Cao, eds., Proceedings of 2008
IEEE/WIC/ACM International Conference on Web Intelli-
gence and Intelligent Agent Technology Workshops(WI-IAT
2008), pp. 553–557, IEEE, 2008.

[35] P.-A. Champin, G.-J. Houben and P. Thiran, CROSS: an OWL
Wrapper for Reasoning on Relational Databases, in C. Par-
ent, K.-D. Schewe, V. C. Storey and B. Thalheim, eds., Con-
ceptual Modeling - ER 2007: 26th International Conference
on Conceptual Modeling, Lecture Notes in Computer Science,
vol. 4801, pp. 502–517, Springer, 2007.

[36] N. Chatterjee and M. Krishna, Semantic Integration of Het-
erogeneous Databases on the Web, in B. B. Bhattacharyya,
C. A. Murthy, B. B. Chaudhuri and B. Chanda, eds., Inter-
national Conference on Computing: Theory and Applications
(ICCTA 2007), pp. 325–329, IEEE, 2007.

[37] A. Chebotko, S. Lu and F. Fotouhi, Semantics Preserving
SPARQL-to-SQL Translation, Data & Knowledge Engineer-
ing, 68(10), pp. 973–1000, 2009.

[38] H. Chen, Z. Wu, Y. Mao and G. Zheng, DartGrid: a Semantic
Infrastructure for Building Database Grid Applications, Con-
currency and Computation: Practice and Experience, 18(14),
pp. 1811–1828, 2006.

[39] P. P.-S. Chen, The Entity-Relationship Model - Toward a Uni-
fied View of Data, ACM Transactions on Database Systems
(TODS), 1(1), pp. 9–36, 1976.

[40] R. H. Chiang, T. M. Barron and V. C. Storey, Reverse Engi-
neering of Relational Databases: Extraction of an EER Model
from a Relational Database, Data & Knowledge Engineering,
12(2), pp. 107–142, 1994.

[41] E. F. Codd, A Relational Model of Data for Large Shared
Data Banks, Communications of the ACM, 13(6), pp. 377–

387, 1970.
[42] O. Curé and R. Squelbut, A Database Trigger Strategy to

Maintain Knowledge Bases Developed via Data Migration, in
C. Bento, A. Cardoso and G. Dias, eds., Progress in Artificial
Intelligence: 12th Portuguese Conference on Artificial Intelli-
gence (EPIA 2005), Lecture Notes in Computer Science, vol.
3808, pp. 206–217, Springer, 2005.

[43] C. Curino, G. Orsi, E. Panigati and L. Tanca, Accessing and
Documenting Relational Databases through OWL Ontolo-
gies, in T. Andreasen, R. R. Yager, H. Bulskov, H. Chris-
tiansen and H. Legind Larsen, eds., Flexible Query Answering
Systems: 8th International Conference (FQAS 2009), Lecture
Notes in Computer Science, vol. 5822, pp. 431–442, Springer,
2009.

[44] R. Cyganiak, A Relational Algebra for SPARQL, Technical
Report HPL-2005-170, Hewlett-Packard, 2005.

[45] S. Das and J. Srinivasan, Database Technologies for RDF, in
S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh,
M.-C. Rousset and R. A. Schmidt, eds., Reasoning Web. Se-
mantic Technologies for Information Systems: 5th Interna-
tional Summer School 2009, Lecture Notes in Computer Sci-
ence, vol. 5689, pp. 205–221, Springer, 2009.

[46] J. de Bruijn, F. Martin-Recuerda, D. Manov and M. Ehrig,
State-of-the-art Survey on Ontology Merging and Aligning,
SEKT Project, Deliverable D4.2.1, 2004.

[47] M. del Mar Roldan-Garcia and J. F. Aldana-Montes, A Sur-
vey on Disk Oriented Querying and Reasoning on the Seman-
tic Web, in R. S. Barga and X. Zhou, eds., Proceedings of
22nd International Conference on Data Engineering Work-
shops (ICDEW’06), IEEE, 2006.

[48] C. Dolbear and G. Hart, Ontological Bridge Building - Using
Ontologies to Merge Spatial Datasets, in D. L. McGuinness,
P. Fox and B. Brodaric, eds., Semantic Scientific Knowledge
Integration: AAAI Spring Symposium (AAAI/SSS Workshop),
pp. 15–20, 2008.

[49] E. Dragut and R. Lawrence, Composing Mappings between
Schemas using a Reference Ontology, in R. Meersman and
Z. Tari, eds., On the Move to Meaningful Internet Systems
2004: CoopIS, DOA, and ODBASE, Lecture Notes in Com-
puter Science, vol. 3290, pp. 783–800, Springer, 2004.

[50] B. Elliott, E. Cheng, C. Thomas-Ogbuji and Z. M. Ozsoyoglu,
A Complete Translation from SPARQL into Efficient SQL,
in B. C. Desai, ed., Proceedings of the 2009 International
Database Engineering & Applications Symposium (IDEAS
’09), pp. 31–42, ACM, 2009.

[51] R. Elmasri and S. B. Navathe, Fundamentals of Database Sys-
tems, The Benjamin/Cummings Publishing Company, Inc.,
San Francisco, CA, USA, 6th ed., 2010.

[52] M. Fahad, ER2OWL: Generating OWL Ontology from ER
Diagram, in Z. Shi, E. Mercier-Laurent and D. Leake, eds.,
Intelligent Information Processing IV: 5th IFIP International
Conference on Intelligent Information Processing, pp. 28–37,
Springer, 2008.

[53] M. Fisher, M. Dean and G. Joiner, Use of OWL and SWRL
for Semantic Relational Database Translation, in K. Clark and
P. F. Patel-Schneider, eds., Proceedings of the Fourth OWLED
Workshop on OWL: Experiences and Directions, 2008.

[54] J. Geller, S. A. Chun and Y. J. An, Toward the Semantic Deep
Web, Computer, 41(9), pp. 95–97, 2008.

[55] R. Ghawi and N. Cullot, Database-to-Ontology Mapping
Generation for Semantic Interoperability, in 3rd International

http://www.openlinksw.co.uk/virtuoso/Whitepapers/pdf/Virtuoso_SQL_to_RDF_Mapping.pdf
http://www.openlinksw.co.uk/virtuoso/Whitepapers/pdf/Virtuoso_SQL_to_RDF_Mapping.pdf
http://www.openlinksw.co.uk/virtuoso/Whitepapers/pdf/Virtuoso_SQL_to_RDF_Mapping.pdf

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 39

Workshop on Database Interoperability (InterDB 2007), held
in conjunction with VLDB 2007, 2007.

[56] A. Gomez-Perez, O. Corcho-Garcia and M. Fernandez-
Lopez, Ontological Engineering, Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1st ed., 2003.

[57] A. J. G. Gray, N. Gray and I. Ounis, Can RDB2RDF Tools
Feasibly Expose Large Science Archives for Data Integra-
tion?, in L. Aroyo, P. Traverso, F. Ciravegna et al., eds., The
Semantic Web: Research and Applications: 6th European Se-
mantic Web Conference (ESWC 2009), Lecture Notes in Com-
puter Science, vol. 5554, pp. 491–505, Springer, 2009.

[58] T. Gruber, Toward Principles for the Design of Ontolo-
gies Used for Knowledge Sharing, International Journal of
Human-Computer Studies, 43(5-6), pp. 907–928, 1995.

[59] N. Guarino, Formal Ontology and Information Systems, in
Formal Ontologies in Information Systems: Proceedings of
the 1st International Conference (FOIS’98), pp. 3–15, IOS
Press, 1998.

[60] T. Heath and C. Bizer, Linked Data: Evolving the Web into
a Global Data Space, Morgan & Claypool Publishers, San
Rafael, 2011.

[61] S. Hellmann, J. Unbehauen, A. Zaveri, J. Lehmann, S. Auer,
S. Tramp, H. Williams, O. Erling, T. Thibodeau Jr, K. Ide-
hen, A. Blumauer and H. Nagy, Report on Knowledge
Extraction from Structured Sources, LOD2 Project, Deliv-
erable 3.1.1, available at: http://static.lod2.eu/
Deliverables/deliverable-3.1.1.pdf, 2011.

[62] J. Hendler, Web 3.0: Chicken Farms on the Semantic Web,
IEEE Computer, 41(1), pp. 106–108, 2008.

[63] M. Hert, G. Reif and H. C. Gall, Updating Relational Data
via SPARQL/Update, in F. Daniel, L. Delcambre, F. Fotouhi
et al., eds., Proceedings of the 2010 EDBT/ICDT Workshops,
ACM, 2010.

[64] M. Hert, G. Reif and H. C. Gall, A Comparison of
RDB-to-RDF Mapping Languages, in C. Ghidini, A.-C.
Ngonga Ngomo, S. Lindstaedt and T. Pellegrini, eds., Pro-
ceedings of the 7th International Conference on Semantic
Systems (I-SEMANTICS 2011), pp. 25–32, ACM, 2011.

[65] G. Hillairet, F. Bertrand and J. Y. Lafaye, MDE for Publish-
ing Data on the Semantic Web, in F. Silva Parreiras, J. Z. Pan,
U. Assmann and J. Henriksson, eds., Transforming and Weav-
ing Ontologies in Model Driven Engineering: Proceedings of
the 1st International Workshop (TWOMDE 2008), pp. 32–46,
2008.

[66] W. Hu and Y. Qu, Discovering Simple Mappings between Re-
lational Database Schemas and Ontologies, in K. Aberer, K.-
S. Choi, N. Noy et al., eds., The Semantic Web: 6th Inter-
national Semantic Web Conference, 2nd Asian Semantic Web
Conference (ISWCN 2007 + ASWC 2007), Lecture Notes in
Computer Science, vol. 4825, pp. 225–238, Springer, 2007.

[67] P. Johannesson, A Method for Transforming Relational
Schemas into Conceptual Schemas, in Proceedings of the
10th International Conference on Data Engineering (ICDE
1994), pp. 190–201, IEEE, 1994.

[68] D. Jurić, M. Banek and Z. Skočir, Uncovering the Deep Web:
Transferring Relational Database Content and Metadata to
OWL Ontologies, in I. Lovrek, R. J. Howlett and L. C. Jain,
eds., Knowledge-Based Intelligent Information and Engineer-
ing Systems: 12th International Conference (KES 2008), Lec-
ture Notes in Computer Science, vol. 5177, pp. 456–463,
Springer, 2008.

[69] Y. Kalfoglou and M. Schorlemmer, Ontology Mapping: the
State of the Art, The Knowledge Engineering Review, 18(1),
pp. 1–31, 2003.

[70] V. Kashyap, Design and Creation of Ontologies for Environ-
mental Information Retrieval, in First Agricultural Service
Ontology (AOS) Workshop, 2001.

[71] N. Konstantinou, D.-E. Spanos, M. Chalas, E. Solidakis and
N. Mitrou, VisAVis: An Approach to an Intermediate Layer
between Ontologies and Relational Database Contents, in
F. Frasincar, G.-J. Houben and P. Thiran, eds., Proceedings of
the CAiSE’06 3rd International Workshop on Web Informa-
tion Systems Modeling (WISM’06), pp. 1050–1061, 2006.

[72] N. Konstantinou, D.-E. Spanos and N. Mitrou, Ontology and
Database Mapping: A Survey of Current Implementations
and Future Directions, Journal of Web Engineering, 7(1), pp.
1–24, 2008.

[73] N. Konstantinou, D.-E. Spanos, P. Stavrou and N. Mitrou,
Technically Approaching the Semantic Web Bottleneck, In-
ternational Journal of Web Engineering and Technology,
6(1), pp. 83–111, 2010.

[74] M. Korotkiy and J. L. Top, From Relational Data to RDFS
Models, in N. Koch, P. Fraternali and M. Wirsing, eds., Web
Engineering: 4th International Conference (ICWE 2004),
Lecture Notes in Computer Science, vol. 3140, pp. 430–434,
Springer, 2004.

[75] A. Kupfer, S. Eckstein, K. Neumann and B. Mathiak, Han-
dling Changes of Database Schemas and Corresponding On-
tologies, in J. F. Roddick, V. R. Benjamins, S. S.-S. Cherfi
et al., eds., Advances in Conceptual Modeling - Theory and
Practice: ER 2006 Workshops, Lecture Notes in Computer
Science, vol. 4231, pp. 227–236, Springer, 2006.

[76] M. Laclavík, RDB2Onto: Relational Database Data to
Ontology Individuals Mapping, in P. Návrat, P. Bartoš,
M. Bieliková, L. Hluchý and P. Vojtáš, eds., Tools for Acquisi-
tion, Organisation and Presenting of Information and Knowl-
edge, pp. 86–89, 2006.

[77] N. Lammari, I. Comyn-Wattiau and J. Akoka, Extracting
Generalization Hierarchies from Relational Databases: A Re-
verse Engineering Approach, Data & Knowledge Engineer-
ing, 63(2), pp. 568–589, 2007.

[78] G. Lausen, Relational Databases in RDF: Keys and Foreign
Keys, in V. Christophides, M. Collard and C. Gutierrez, eds.,
Semantic Web, Ontologies and Databases: VLDB Workshop
(SWDB-ODBIS 2007), Lecture Notes in Computer Science,
vol. 5005, pp. 43–56, Springer, 2007.

[79] G. Lausen, M. Meier and M. Schmidt, SPARQLing Con-
straints for RDF, in A. Kemper, P. Valduriez, N. Mouaddib
et al., eds., Advances in Database Technology: Proceedings
of the 11th International conference on Extending Database
Technology (EDBT ’08), pp. 499–509, ACM, 2008.

[80] M. Lenzerini, Data Integration: A Theoretical Perspective,
in Proceedings of the twenty-first ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pp.
233–246, 2002.

[81] D. Levshin, Mapping Relational Databases to the Semantic
Web with Original Meaning, in D. Karagiannis and Z. Jin,
eds., Knowledge Science, Engineering and Management:
Third International Conference (KSEM 2009), Lecture Notes
in Computer Science, vol. 5914, pp. 5–16, Springer, 2009.

[82] M. Li, X. Du and S. Wang, A Semi-Automatic Ontology Ac-
quisition Method for the Semantic Web, in W. Fan, Z. Wu

http://static.lod2.eu/Deliverables/deliverable-3.1.1.pdf
http://static.lod2.eu/Deliverables/deliverable-3.1.1.pdf

40 D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey

and J. Yang, eds., Advances in Web-Age Information Man-
agement: 6th International Conference (WAIM 2005), Lecture
Notes in Computer Science, vol. 3739, pp. 209–220, Springer,
2005.

[83] J. Lu, F. Cao, L. Ma, Y. Yu and Y. Pan, An Effective SPARQL
Support over Relational Databases, in V. Christophides,
M. Collard and C. Gutierrez, eds., Semantic Web, Ontolo-
gies and Databases: VLDB Workshop (SWDB-ODBIS 2007),
Lecture Notes in Computer Science, vol. 5005, pp. 57–76,
Springer, 2007.

[84] L. Lubyte and S. Tessaris, Automatic Extraction of Ontolo-
gies Wrapping Relational Data Sources, in S. S. Bhowmick,
J. Küng and R. Wagner, eds., Database and Expert Systems
Applications: 20th International Conference (DEXA 2009),
Lecture Notes in Computer Science, vol. 5690, pp. 128–142,
Springer, 2009.

[85] F. Maali, R. Cyganiak and V. Peristeras, Re-using Cool URIs:
Entity Reconciliation Against LOD Hubs, in Proceedings of
the 4th Linked Data on the Web Workshop (LDOW 2011),
2011.

[86] A. Maedche and S. Staab, Ontology Learning for the Seman-
tic Web, IEEE Intelligent Systems, 16(2), pp. 72–79, 2001.

[87] P. Martin, J. R. Cordy and R. Abu-Hamdeh, Information Ca-
pacity Preserving Translations of Relational Schemas Using
Structural Transformation, External Technical Report, ISSN
0836-0227-95-392, Ontario, Canada, 1995.

[88] A. Miller and D. McNeil, Revelytix RDB Map-
ping Language Specification, available at: http:
//www.knoodl.com/ui/groups/Mapping_
Ontology_Community/wiki/User_Guide/
media/RDB_Mapping_Specification_v0.2,
Revelytix, 2010.

[89] B. Motik, On the Properties of Metamodeling in OWL, Jour-
nal of Logic and Computation, 17(4), pp. 617–637, 2007.

[90] B. Motik, I. Horrocks and U. Sattler, Bridging the Gap be-
tween OWL and Relational Databases, in C. Williamson and
M. E. Zurko, eds., Proceedings of the 16th International Con-
ference on World Wide Web (WWW 2007), pp. 807–816, ACM
Press, 2007.

[91] V. Mulwad, T. Finin, Z. Syed and A. Joshi, Using Linked Data
to Interpret Tables, in O. Hartig, A. Harth and J. Sequeda,
eds., Proceedings of the First International Workshop on Con-
suming Linked Data (COLD 2010), 2010.

[92] I. Myroshnichenko and M. C. Murphy, Mapping ER Schemas
to OWL Ontologies, in S.-C. Chen, R. Glasberg, J. Heflin
et al., eds., Proceedings of the 2009 IEEE International Con-
ference on Semantic Computing (ICSC 2009), pp. 324–329,
IEEE, 2009.

[93] C. Nyulas, M. O’Connor and S. Tu, DataMaster - a Plug-in
for Importing Schemas and Data from Relational Databases
into Protégé, in 10th International Protégé Conference, 2007.

[94] P. Papapanagiotou, P. Katsiouli, V. Tsetsos, C. Anagnostopou-
los and S. Hadjiefthymiades, RONTO: Relational to Ontol-
ogy Schema Matching, AIS SIGSEMIS Bulletin, 3(3-4), pp.
32–36, 2006.

[95] C. Pérez De Laborda and S. Conrad, Relational.OWL - A
Data and Schema Representation Format Based on OWL,
in S. Hartmann and M. Stumptner, eds., Proceedings of
the Second Asia-Pacific Conference on Conceptual Modeling
(APCCM2005), pp. 89–96, 2005.

[96] C. Pérez De Laborda and S. Conrad, Database to Semantic

Web Mapping using RDF Query Languages, in D. W. Em-
bley, A. Olivé and S. Ram, eds., Conceptual Modeling - ER
2006: 25th International Conference on Conceptual Model-
ing, Lecture Notes in Computer Science, vol. 4215, pp. 241–
254, 2006.

[97] C. Pérez De Laborda, M. Zloch and S. Conrad, RDQuery
- Querying Relational Databases on-the-fly with RDF-QL,
poster in the 15th International Conference on Knowledge
Engineering and Knowledge Management (EKAW 2006),
2006.

[98] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenz-
erini and R. Rosati, Linking Data to Ontologies, Journal on
Data Semantics, 10, pp. 133–173, 2008.

[99] A. Poggi, M. Rodriguez-Muro and M. Ruzzi, Ontology-based
Database Access with DIG-MASTRO and the OBDA Plugin
for Protégé, in K. Clark and P. F. Patel-Schneider, eds., Pro-
ceedings of the Fourth OWLED Workshop on OWL: Experi-
ences and Directions, 2008.

[100] S. Polfliet and R. Ichise, Automated Mapping Generation
for Converting Databases into Linked Data, in A. Polleres
and H. Chen, eds., Proceedings of the ISWC 2010 Posters
& Demonstrations Track: Collected Abstracts, pp. 173–176,
2010.

[101] W. J. Premerlani and M. R. Blaha, An Approach for Reverse
Engineering of Relational Databases, Communications of the
ACM, 37(5), pp. 42–49, 1994.

[102] R. Ramakrishnan and J. Gehrke, Database Management Sys-
tems, McGraw-Hill, New York City, NY, 3rd ed., 2002.

[103] S. Ramanathan and J. Hodges, Extraction of Object-Oriented
Structures from Existing Relational Databases, ACM SIG-
MOD Record, 26(1), pp. 59–64, 1997.

[104] S. Ramanujam, V. Khadilkar, L. Khan, M. Kantarcioglu,
B. Thuraisingham and S. Seida, Update-Enabled Triplifica-
tion of Relational Data into Virtual RDF Stores, International
Journal of Semantic Computing, 4(4), pp. 423–451, 2010.

[105] S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T. Thibodeau,
S. Auer, J. Sequeda and A. Ezzat, A Survey of Current Ap-
proaches for Mapping of Relational Databases to RDF, W3C
RDB2RDF Incubator Group Report, 2009.

[106] P. E. Salas, K. K. Breitman, J. F. Viterbo and M. A. Casanova,
Interoperability by Design using the StdTrip Tool: an a priori
Approach, in A. Paschke, N. Henze and T. Pellegrini, eds.,
Proceedings of the 6th International Conference on Semantic
Systems (I-SEMANTICS 2010), ACM, 2010.

[107] M. Schmidt, T. Hornung, G. Lausen and C. Pinkel,
SP2Bench: A SPARQL Performance Benchmark, in J. Li and
P. S. Yu, eds., Proceedings of the 25th International Confer-
ence on Data Engineering (ICDE 2009), pp. 222–233, IEEE,
2008.

[108] M. Schneider and G. Sutcliffe, Reasoning in the OWL 2 Full
Ontology Language using First-Order Automated Theorem
Proving, in N. Bjørner and V. Sofronie-Stokkermans, eds.,
Automated Deduction - CADE-23: 23rd International Con-
ference on Automated Deduction, Lecture Notes in Computer
Science, vol. 6803, pp. 461–475, Springer, 2011.

[109] A. Seaborne, D. Steer and S. Williams, SQL-RDF, in W3C
Workshop on RDF Access to Relational Databases, 2007.

[110] J. F. Sequeda, R. Depena and D. P. Miranker, Ultrawrap: Us-
ing SQL Views for RDB2RDF, poster in 8th International
Semantic Web Conference (ISWC 2009), 2009.

[111] J. F. Sequeda, S. H. Tirmizi, O. Corcho and D. P. Miranker,

http://www.knoodl.com/ui/groups/Mapping_Ontology_Community/wiki/User_Guide/media/RDB_Mapping_Specification_v0.2
http://www.knoodl.com/ui/groups/Mapping_Ontology_Community/wiki/User_Guide/media/RDB_Mapping_Specification_v0.2
http://www.knoodl.com/ui/groups/Mapping_Ontology_Community/wiki/User_Guide/media/RDB_Mapping_Specification_v0.2
http://www.knoodl.com/ui/groups/Mapping_Ontology_Community/wiki/User_Guide/media/RDB_Mapping_Specification_v0.2

D.E. Spanos et al. / Bringing Relational Databases into the Semantic Web: A Survey 41

Direct Mapping SQL Datababases to the Semantic Web: A
Survey (Technical Report TR-09-04), University of Texas,
Austin, Department of Computer Sciences, 2009.

[112] G. Shen, Z. Huang, X. Zhu and X. Zhao, Research on
the Rules of Mapping from Relational Model to OWL, in
B. Cuenca-Grau, P. Hitzler, C. Shankey and E. Wallace, eds.,
Proceedings of the OWLED’06 Workshop on OWL: Experi-
ences and Directions, 2006.

[113] A. Sheth and R. Meersman, Amicalola Report: Database and
Information Systems Research Challenges and Opportunities
in Semantic Web and Enterprises, ACM SIGMOD Record,
31(4), pp. 98–106, 2002.

[114] A. P. Sheth and J. A. Larson, Federated Database Systems
for Managing Distributed, Heterogeneous, and Autonomous
Databases, ACM Computing Surveys, 22(3), pp. 183–236,
1990.

[115] E. Sirin and J. Tao, Towards Integrity Constraints in OWL,
in R. Hoekstra and P. F. Patel-Schneider, eds., Proceedings
of the 6th International Workshop on OWL: Experiences and
Directions (OWLED 2009), 2009.

[116] K. Sonia and S. Khan, R2O Transformation System: Relation
to Ontology Transformation for Scalable Data Integration, in
J. Bernardino and B. C. Desai, eds., Proceedings of the 2008
International Database Engineering & Applications Sympo-
sium (IDEAS ’08), pp. 291–295, ACM, 2008.

[117] L. Stojanovic, N. Stojanovic and R. Volz, Migrating Data-
Intensive Web Sites into the Semantic Web, in G. B. Lam-
ont, ed., Proceedings of the 2002 ACM Symposium on Applied
Computing (SAC’02), pp. 1100–1107, ACM, 2002.

[118] M. Svihla and I. Jelinek, Two Layer Mapping from Database
to RDF, in Proceedinfs of the Sixth International Scien-
tific Conference Electronic Computers and Informatics (ECI
2004), pp. 270–275, 2004.

[119] M. Svihla and I. Jelinek, Benchmarking RDF Production
Tools, in R. Wagner, N. Revell and G. Pernul, eds., Database
and Expert Systems Applications: 18th International Confer-
ence(DEXA 2007), Lecture Notes in Computer Science, vol.
4653, pp. 700–709, Springer, 2007.

[120] S. H. Tirmizi, J. F. Sequeda and D. P. Miranker, Translating
SQL Applications to the Semantic Web, in S. S. Bhowmick,
J. Küng and R. Wagner, eds., Database and Expert Systems
Applications: 19th International Conference (DEXA 2008),
Lecture Notes in Computer Science, vol. 5181, pp. 450–464,
Springer, 2008.

[121] Q. Trinh, K. Barker and R. Alhajj, RDB2ONT: A Tool for
Generating OWL Ontologies From Relational Database Sys-
tems, in T. Atmaca, P. Dini, P. Lorenz and J. Neuman de
Sousa, eds., Proceedings of the Advanced International Con-
ference on Telecommunications and International Confer-
ence on Internet and Web Applications and Services (AICT-

ICIW’06), IEEE, 2006.
[122] S. R. Upadhyaya and P. S. Kumar, ERONTO: a Tool for Ex-

tracting Ontologies from Extended E/R Diagrams, in L. M.
Liebrock, ed., Proceedings of the 2005 ACM Symposium on
Applied Computing (SAC’05), pp. 666 – 670, ACM, 2005.

[123] K. N. Vavliakis, T. K. Grollios and P. A. Mitkas, RDOTE -
Transforming Relational Databases into Semantic Web Data,
in A. Polleres and H. Chen, eds., Proceedings of the ISWC
2010 Posters & Demonstrations Track: Collected Abstracts,
pp. 121–124, 2010.

[124] J. Volz, C. Bizer, M. Gaedke and G. Kobilarov, Discovering
and Maintaining Links on the Web of Data, in A. Bernstein,
D. R. Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta
and K. Thirunarayan, eds., The Semantic Web - ISWC 2009:
8th International Semantic Web Conference, Lecture Notes in
Computer Science, vol. 5823, pp. 650–665, Springer, 2009.

[125] R. Volz, S. Handschuh, S. Staab, L. Stojanovic and N. Sto-
janovic, Unveiling the Hidden Bride: Deep Annotation for
Mapping and Migrating Legacy Data to the Semantic Web,
Web Semantics: Science, Services and Agents on the World
Wide Web, 1(2), pp. 187–206, 2004.

[126] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt,
G. Schuster, H. Neumann and S. Hübner, Ontology-Based In-
tegration of Information - A Survey of Existing Approaches,
in A. Gómez-Pérez, M. Gruninger, H. Stuckenschmidt and
M. Uschold, eds., Proceedings of the IJCAI-01 Workshop on
Ontologies and Information Sharing, pp. 108–117, 2001.

[127] Z. Xu, X. Cao, Y. Dong and W. Su, Formal Approach and
Automated Tool for Translating ER Schemata into OWL On-
tologies, in H. Dai, R. Srikant and C. Zhang, eds., Advances
in Knowledge Discovery and Data Mining: 8th Pacific-Asia
Conference (PAKDD 2004), Lecture Notes in Computer Sci-
ence, vol. 3056, pp. 464–475, Springer, 2004.

[128] Z. Xu, S. Zhang and Y. Dong, Mapping between Relational
Database Schema and OWL Ontology for Deep Annotation,
in T. Nishida, Z. Shi, U. Visser et al., eds., Proceedings of
the 2006 IEEE/WIC/ACM International Conference on Web
Intelligence, pp. 548–552, IEEE, 2006.

[129] S. Zhao and E. Chang, From Database to Semantic Web On-
tology: An Overview, in R. Meersman, Z. Tari and P. Herrero,
eds., On the Move to Meaningful Internet Systems: OTM 2007
Workshops, Lecture Notes in Computer Science, vol. 4806,
pp. 1205–1214, Springer, 2007.

[130] C. Zhou, C. Xu, H. Chen and K. Idehen, Browser-based Se-
mantic Mapping Tool for Linked Data in Semantic Web, in
C. Bizer, T. Heath, K. Idehen and T. Berners-Lee, eds., Pro-
ceedings of the WWW 2008 Workshop on Linked Data on the
Web (LDOW 2008), 2008.

