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Abstract: As data proliferates at increasing rates, the need for real-time stream
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evidence of their efficiency in real dynamic environments. In this paper, we present
a framework for the effective, real-time processing of streaming data and we define
and analyze in depth its key components. Our framework serves as a basis for the
implementation of the SensorStream prototype, on which we run numerous performance
and scalability measurements that outline its behaviour and demonstrate its suitability
and scalability for solutions that require real-time information processing from distributed
and heterogeneous data sources.
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1 Introduction

In recent years, technological advancements in
microsensor technology and increasing business needs
have laid the ground for an emerging class of applications
that shift their focus toward data streams. The
availability of large scale sensor deployments results in
huge, often unbounded, quantities of data generated
by all kinds of sensor devices, calling for efficient
management and storage. In the same time, businesses
seek ways to perform analysis of their data, be it
financial, medical, customer or corporate network
data, as soon as it becomes available, in order to
have an accurate picture of the market situation and
be able to respond in a timely manner. These needs
originally led to the development of several Data
Stream Management Systems (DSMS) during the last
decade (Arasu et al., 2004; Chandrasekaran et al.,
2003; Abadi et al., 2005), so as to fill the gap left
by traditional Database Management Systems, which
cannot deal with continuous, real-time sequences of
data. DSMS introduced a novel rationale that is not
based on persistent storage of all available data and
user-invoked queries, but instead advocates on the fly
stream manipulation and permanent monitoring queries.

In the parallel universe of Knowledge Engineering,
we can see that while reasoners have excelled their
performance with regard to static knowledge, the
issue of reasoning with frequently changing facts and
assertions has not been adequately addressed yet.
Stream reasoning has been coined as a term that
describes the above problem (Della Valle et al., 2009)
of performing reasoning on a knowledge base comprising
stable or occasionally changing terminological axioms
and a stream of incoming assertions or facts. Advances
and solutions to this problem will progressively lead
the way for smarter and more complex applications,
including traffic management and fastest route planning,
environmental monitoring, surveillance and object
tracking scenarios, and disease outburst detection
applications among others.

So far, work in this relatively new field includes
re-definition of the RDF model and enhancements
of current W3C recommendations for time-aware
knowledge representation and querying (Gutierrez et al.,
2007; Pugliese et al., 2008; Rodriguez et al., 2009;
Bolles et al., 2008; Barbieri et al., 2009), incremental

reasoning techniques (Cuenca Grau et al., 2007; Parsia
et al., 2006; Volz et al., 2005) and frameworks that use
combined experience from the database and Semantic
Web research fields (Walavalkar et al., 2008; Barbieri
et al., 2010). However, despite the need for working
applications that can manage and query efficiently
streaming data, there is considerable lack of such tools in
the literature since most approaches remain theoretical
and fail to provide evaluation of their performance that
will serve as adequate proof of their utility.

In this paper, we present a generic ontology-
based architecture for the efficient SPARQL querying
of streaming XML data and event recognition. Our
framework does not impose any restriction to the nature
of the incoming data, as long as they are encoded in
a well-formed XML template. Moreover, our framework
can be tailored to any application context according to
the ontology selected for use. Sets of domain-specific
rules define the system’s attitude and the actions to
be taken, when a high-level event is being recognized.
We created the SensorStream prototype on top of Jena
Semantic Web framework (Carroll et al., 2004) as a
working implementation of our architecture and ran
experiments to assess its performance. Results show
that our system is perfectly scalable, has near real-time
response and can handle changes in the terminological
part of the ontology, providing sound inferences at all
times.

The rest of the paper is organized as follows: in
Section 2, some background information on the stream
management problem as well as the motivation behind
our work are presented. Section 3 mentions the related
work, while Section 4 presents in detail our framework.
Section 5 provides an evaluation of the efficiency of our
system and the simulation experiments run on. Finally,
Section 6 highlights the conclusions and sketches out
future work.

2 Background and Motivation

In general, the issue of efficient management and
querying of dynamic data is related to several research
domains. We have already mentioned that the need
for stream processing had originally arisen within
the database community when it became evident
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that typical DBMS could not support applications
where data is dynamic and processing requests are
event-driven rather than human-initiated. Traditional
Database Management Systems (DBMS) are in effect
passive repositories of data that execute queries on
user’s demand, therefore they are inadequate to handle
streaming data of possibly infinite size and execute
continuous queries on them. This has led to the
introduction of several prototype systems (Arasu et al.,
2004; Chandrasekaran et al., 2003; Abadi et al., 2005;
Chen et al., 2000; Liu et al., 1999) that constitute the
groundwork of the recently emerged stream management
problem (Babcock et al., 2002).

In a nutshell, DSMS introduce various methods in
order to overcome the unbounded nature of stream
data and the problems it poses on query execution.
Most DSMS extend the relational model by including
a timestamp as a label for each relational tuple. This
timestamp can either denote the arrival time of the
tuple in the system or constitute a property of the
tuple itself, e.g. the occurrence time of the event this
tuple describes. The first kind of timestamp is called
implicit, while the second one is referred to as explicit.
The timestamp is usually the indicator value acting as
a basis for the formulation of stream data windows. The
notion of windows in stream manipulation tasks is a
common one, since it greatly simplifies query execution
by considering only finite subsets of the entire stream.
A window over a stream is defined as a finite portion
of the stream at some point in time. This portion can
be defined in terms of either time or number of tuples:
in the former case, the window is said to be time-based
or logical, while in the latter case, the window is called
tuple-based or physical. The elements of the stream that
form the window change as new stream data becomes
available in a DSMS system.

According to the definitions given in (Patroumpas
and Sellis, 2006), a logical window for a stream S of
tuples is the set of tuples with timestamps occurring in
the [t1, t2] interval:

wl(S, t1, t2) = {S(τ), t1 ≤ τ ≤ t2} (1)

On the contrary, a physical window applied at time
instant τ contains the N most recent tuples of a stream:

wp(S, N, τ) = {wl(S, t1, τ) : t1 ≤ τ ∧ |wl(S, t1, τ)| ≤ N

∧ ∀t2 < t1 : |wl(S, t2, τ)| > N} (2)

Intuitively, the above definition specifies t1 as the
timestamp of the oldest among the N most recent tuples
and uses it as the start of a logical window spanning until
τ , which denotes the current time instant.

Depending on the way that windows are updated,
they can be categorized as sliding, tumbling or landmark
windows. Sliding windows have a fixed length and
both their bounds are moving at a predefined interval,
replacing old stream elements with new ones. A sliding
window with size w and progression step d can be defined
as:

wsl(S, w, d, t0, τ) =
wl(S, t0, τ), t0 ≤ τ ≤ t0 + w and mod(τ − t0, d) = 0

wl(S, τ − w, τ), t0 + w < τ and mod(τ − t0, d) = 0

wsl(S, w, d, t0, τ − dt), mod(τ − t0, d) ̸= 0 (3)

where t0 is the time of the initial application of the
windowing method and τ is the current time instant.
Equation (3) shows that sliding windows are computed
at fixed time intervals d, starting at t0. For intermediate
times, the sliding window stays the same as the one
computed in the preceding time instant (where dt
denotes the time resolution of the system), hence the
recursive nature of the last branch of the definition.
Usually, progression step d is smaller than window size
w, leading to overlaps between two successive sliding
windows.

Tumbling windows can be considered as a special case
of sliding windows, where the window is moving at a
fixed interval of length equal to the window size (d = w).
Thus, tumbling windows are pairwise disjoint and do not
share any stream elements:

wtum(S, w, t0, τ) = wsl(S, w, w, t0, τ) (4)

Landmark windows are another type of window,
where the beginning bound tl remains fixed while the
other one is moving, resulting in a variable window size
(Arasu et al., 2006):

wland(S, tl, τ) =

{
wl(S, tl, τ), τ ≥ tl

0, τ < tl
(5)

A graphical representation of the above three types
of logical windows is shown in Figure 1. Physical (tuple-
based) windows are defined analogously as their logical
counterparts in Equations (3), (4) and (5). Besides
the aforementioned rudimentary windowing methods,
semantics of other windowing techniques have been
proposed in the literature, such as the partitioned
window technique (Li et al., 2005), where windows can
be formed according to attributes of interest, and the
much resembling notion of predicate windows (Ghanem
et al., 2006). In our approach, we favour the use of a
sliding physical window, which can be lightly formed and
updated.

Other popular stream processing techniques include
filtering, punctuation and synopses. Filtering, as the
name suggests, mainly consists of applying criteria
for the selection of a subset of stream elements and
ignoring the rest, while punctuation uses special markers
inside the stream to indicate that the stream elements
that have arrived so far can be partially processed
and blocking operators (e.g. a maximum or a sorting
operator) can be applied to them. Synopses are mere
summaries and aggregations of incoming data, extremely
useful when approximate answers are required. A brief
overview of these techniques is provided in (Maier et al.,
2005).
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Lately, a similar tendency has been observed in
the Semantic Web research community. While the
trade-off between expressive knowledge representation
languages and reasoning complexity has been extensively
documented so far (Baader et al., 2005) and tools
that offer scalable and efficient ontology storage and
reasoning solutions surface at an increasing rate
(Broekstra et al., 2002; Carroll et al., 2004; Das and
Srinivasan, 2009; Erling and Mikhailov, 2010), the focus
has been mainly put on static collections of data and
ontologies. Relatively few methods and frameworks have
been proposed for the processing and management of
dynamic semantic data and ontologies and even fewer
working application examples have been implemented so
far. Such efforts are presented in the next section.

3 Related Work

The lack of working stream processing applications in
the Semantic Web context, pointed out in Section 2,
is partly due to the fact that current popular W3C
recommendations OWL 2 (Motik et al., 2009) and
SPARQL (Prud’hommeaux and Seaborne, 2008) do
not offer satisfactory support for time-evolving data.
Modelling the notion of time is essential, since time is
a primordial factor in dynamic systems and streaming
applications. Considerable effort has been made towards
expanding the RDF model so as to incorporate time. The
most notable efforts to enhance RDF with time features
and provide an adequate respective query language are
presented in (Gutierrez et al., 2007; Pugliese et al.,
2008). Another extension of RDF incorporating the
notion of time is presented in (Rodriguez et al., 2009),
where every RDF resource considered is time annotated.
An extension of SPARQL is proposed along with the
above Time-Annotated RDF extension and they are
both applied in an indicative architecture to store
and query time-varying data. Essentially, this extension
works merely as a synopsis of a more complex RDF
representation that uses few additional proprietary RDF
predicates.

Related efforts that are worth mentioning are the
Time Ontology in OWL (Hobbs and Pan, 2006), which
describes general temporal information and O&M-OWL
(Henson et al., 2009), modelling time series sensor
observations. Likewise, additions to the SPARQL query
language enabling continuous queries over windowed
stream data have been incorporated in the C-SPARQL
(Barbieri et al., 2009) and Streaming SPARQL (Bolles
et al., 2008) approaches. As these approaches define new
languages or update existing ones, they are significantly
different from the work presented here.

Most of the approaches dealing with management
and query processing of streaming data build on
the combination of existing DSMS and experience on
reasoning and storage techniques for static knowledge,
while using some of the aforementioned time-enhanced
languages. To name just one example, Walavalkar et al.

(2008) build on existing mature projects Jena (Carroll
et al., 2004) and TelegraphCQ (Chandrasekaran et al.,
2003) for the reasoning procedure on the static ontology
and stream processing respectively in order to diminish
the processing time of RDF stream messages. The
entire subsumption hierarchy for OWL classes and
properties is computed only once in a preliminary stage,
and stored in a database together with the inference
results from domain and range statements. Then, on
runtime, as RDF statements arrive, new statements
are interpolated in the stream based on the inferences
stored in the system’s database. The performance of
this approach clearly depends on the number of the
initially inferred statements. The underlying assumption
of this work is that all stream messages abide by a
common static ontology schema, making no prevision for
possible changes in the set of ontology axioms. Another
drawback of this approach is the fact that it utilizes the
stored inferences for only a pre-specified class of interest,
ignoring stream messages not obeying this restriction.

A prototype architecture that provides a proof of
concept for the efficiency of the C-SPARQL language
in continuous querying of stream data is described in
(Barbieri et al., 2010). This architecture combines a plain
SPARQL engine with a DSMS to achieve the desired
functionality. According to the above architecture, every
continuous query is split into two parts: a static and a
dynamic one, with the first one invoking the reasoner
to infer new knowledge and the second one delegating
execution to the underlying DSMS. This implies that
reasoning takes place only once for every continuous
query, right after its initial registration with the system.
Thus, any modification in the terminological part of the
knowledge base does not reflect in the results of a query
that has already been registered.

Semantic Streams (Whitehouse et al., 2006)
is a framework that specifies a predicate-based
representation of sensors and their measurements and
allows users to pose Prolog-like queries. The answers
are evaluated using a backward chaining variant where
a goal tree is constructed and consecutive variable
bindings are tried out until an answer is found. The
stream nature of sensor data seems to be overlooked in
this approach and no performance tests are provided,
though it is highly unlikely that real-time requirements
are satisfied given that execution of Prolog programs
can be highly inefficient. Another mainly theoretical
framework for a stream processing middleware is
DyKnow (Heintz et al., 2009), where emphasis is given
on stream reasoning methods and on the devision of
a representation language for policies and processes
applied to the incoming streams.

SensorMasher (Le-Phuoc and Hauswirth, 2009) is
a platform for publishing sensor data as Linked Data
(Bizer et al., 2009), based on a layered architecture,
similar to ours. However, the focus in that work lies on
the exposure of sensor data to the user under different
ways (Web service, HTTP representation, SPARQL
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endpoint etc.) and less on the management aspect and
real-time processing of the incoming stream data.

A context aware environmental monitoring system
that relies on a set of rules and a reference ontology to
deduce high-level events from low-level sensor readings
is presented in (Calder et al., 2010). This approach
shares several features with our system, nevertheless the
streaming nature of incoming sensor data is neglected
and the performance of the system in relevant dynamic
environments remains unclear. Information extraction
from data that arrives in streams is also performed
by complex event processing architectures (Gyllstrom
et al., 2007; Demers et al., 2007) that define proprietary
query languages for data retrieval. These applications,
though, are only marginally related to our work, since
they lack semantic representation of both incoming
data and application context. Our SensorStream system
borrows ideas from several of the above approaches,
building on previous work in context-aware middleware
(Konstantinou et al., 2010).

4 The SensorStream Approach

In this section, we describe a layered architecture for the
efficient real-time processing and reasoning with stream
data. This architecture has served as a basis for the
implementation of our SensorStream prototype and is
depicted in Figure 2. In the rest of this section, we
enumerate the core SensorStream components and detail
on them.

Information sources. Information sources are the
content providers for our system. In this paper, we
give emphasis to streaming sources that constantly
provide new, possibly unbounded, information. Such
examples of information streams include sensor data,
clickstream data, financial data or even network
monitoring messages. Our framework is applicable to all
kinds of streaming data, no matter what its source is.
This suppleness is guaranteed by a common language all
stream messages should adhere to, as explained later.

In some cases, an information source comprises a
sensing device observing its environment and one or more
distributed trackers. Trackers are software components
that process data in order to extract more meaningful
and useful information. For instance, a tracker can
process live video streams in order to extract events
of interest, such as in (Lien et al., 2007; Zhang and
Chang, 2002), where the trackers extract events from
baseball video streams, or in (Comaniciu and Meer, 1999;
Bradski, 1998; Allen et al., 2001) where the algorithms
deal with the face or object tracking problem.

The trackers are considered to be distributed, in the
sense that there is no need of message exchange or
communication between them at any level. A system like
the hereby presented approach can rely on a number of
distributed trackers without the need of a centralized
coordination, with the exception of a common clock
in cases when this is deemed necessary. In case the

information processed needs to be consistent to a
common clock and present continuity and timeliness, a
time server could be contacted.

Message language and mechanism. The various
system components need to communicate via well
defined interfaces. Therefore, there is a need of
specifying:

1. A common language. In the current case, the
language of choice is XML, in order to allow
interoperability with any specific tracker. The
structure and content of XML messages can
be conveniently tailored to the needs of any
application by complying to specific schema
definitions (XSDs). Thus, we relax the assumption
made by the majority of approaches - as seen
in Section 3 - where incoming stream data is a
set of “ready to be consumed” RDF statements.
This is clearly not the case for real applications
and data generators, which usually do not provide
data coupled with context or other semantic
information.

On the contrary, the assumption that data or
measurements are readily available in XML is not
a far-fetched one, especially in the case of financial
or Web applications’ data. In the case of sensing
data, few developing effort is needed to convert
the custom response format of a typical sensor
device (also known as mote) to a XML template
of choice. Thus, we can assume that such small-
scale XML converters are part of every tracker’s or
data source’s interface with the other framework
components. This renders our framework directly
applicable even to situations when regular motes,
usually forming a wireless sensor network, are
used as data providers supporting high level
applications.

2. Common or well interoperable technologies. In
order to establish communication inside a widely
distributed network of heterogeneous devices, one
has many options: the Java Messaging System
(JMS), sockets or Web services to name a
few. In the studied approach, Web services
have been chosen because of the independence
from technologies, portability to any platform,
scalability and maturity of the recommended
approaches. Apache Axis2, CXF, are only a
few of the projects supporting the related W3C
recommendations1.

3. Interfacing. Well-defined and complete
functionality should be exposed to the information
sources and, more precisely, to the trackers.
For the purpose of the current implementation,
only one method is needed, in order to send the
XML message carrying the information from the
trackers to the server. Additional methods could
be applied to send a server’s response in the form
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of commands to the trackers. Such interfacing
methods are necessary when information sources
need to receive feedback from the main processing
unit and hence, adapt themselves in environmental
conditions or intricate higher-level application
needs, possibly expressed in the form of semantic
rules.

Message fusion mechanism. In order to collect,
separate and thereafter fuse the incoming messages, a
wide variety of approaches exist in the literature. In
fact, data fusion from a variety of sources constitutes
a lively research domain with a variety of open issues
and a highly active community (Liggins et al., 2009).
As XML inherently carries only structural information,
in order to combine information from multiple sources
it is essential to enhance semantically this information
and ensure semantic interoperability. In the approach
presented here, mapping rules are used in order to
combine information from multiple sources and leverage
its meaning by producing higher level information.

To be more specific, the information contained in
the XML stream messages contributes and modifies
the knowledge of the system. Ideally, the intended
behavior of the system consists of evolving the ontology
representing the knowledge core of the system, according
to the incoming events encoded in XML. To this end,
a set of mapping rules are employed to add statements
to the knowledge base. These rules are formed according
to the following event-condition-action (ECA) pattern
(Papamarkos et al., 2003):

on event if condition then actions

where the event in our case is a XML message
arrival and the condition is applied to the incoming
XML message. These mapping rules fetch data from
the XML message and store it into the ontology model
in the form of class individuals. They are expressed
in a custom language allowing for combination of the
XML and RDF technical spaces, where typical examples
of conditions in the above clause include the presence
of a specific XPath expression, whereas actions usually
consist of the addition of individual assertions. These
rules are constructed manually from a user who is
aware of the possible templates of the incoming XML
messages and the ontology structure as well. The full
grammar specification of the mapping rule language and
details on the system’s user interfaces can be found in
(Konstantinou et al., 2010).

This design choice automatically raises the limitation
of a single common schema for all stream elements,
assumed by other relevant approaches. Different XML
templates can be considered for every distinct data
generator, as long as there is at least one corresponding
mapping rule to handle the ontology population. An
alternative choice for the XML to OWL transformation
would involve application of XSLT stylesheets to
the incoming XML messages, following the GRDDL
approach (Conolly, 2007). Although our implementation

can handle either of these approaches, for the test
scenario presented in this paper, we followed the
mapping rules approach.

Information manipulation. With this term, we
refer to information administering, processing, storing
and exploiting. The technologies that are chosen have
to be able to cooperate smoothly with each other. For
instance, regarding storage, the available options include
relational databases, distributed (NoSQL) databases,
and semantic web RDF stores. Respectively, processing
and querying should be done using SQL, keyword-
based approaches2, or SPARQL queries. Therefore, the
decisions that have to be taken regarding the information
flow and the related technologies are greatly affected by
the purpose of the whole attempt.

In the present approach, we follow the Semantic
Web point of view, in order to study the corresponding
benefits and difficulties. However, such a view entails the
necessity of making a number of additional choices.

1. The reasoner. We need to be aware that in
the Semantic Web context, reasoning is an
issue that needs to be specially taken care
of. Poor decisions in the choice of a reasoner,
selection of reasoner’s connectivity method with
the application and in some cases even fine tuning
the reasoner can lead to serious performance
degradation. A series of reasoners are nowadays
available in the bibliography, including FaCT++
(Tsarkov and Horrocks, 2006), Pellet (Sirin
et al., 2007), KAON2 (Motik et al., 2005) and
OWLJessKB3 among others. For the current
implementation, the reasoner chosen is Pellet since
it is the one that is open-source, Java-based,
allows integration with the application’s code,
is based on a complete DL reasoning algorithm
but, most importantly, Pellet has the feature of
incremental reasoning, which is closely related
to the characteristics a real-time system should
present. The incremental classification feature
of Pellet allows for improved performance in
cases of frequent axiom modifications in the
knowledge base, given that the classification
hierarchy is incrementally updated instead of being
recomputed from scratch with every axiom change.
Furthermore, incremental consistency checking,
ensures that in an environment of continuousABox
additions or deletions, completion rules are applied
to the updated completion graph and not starting
again from scratch (Halaschek-Wiener et al., 2006).

2. The ontology. The ontology that has to be chosen
in order to describe the concepts involved in
each problem should be carefully selected while
keeping in mind that a highly expressive ontology
entails increased complexity and additional
computational burden for the reasoning procedure.
Thus, among the vast variety of ontologies
available on the Web, special care needs to be
taken in choosing one and tailoring it to the
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application’s needs. It is important to note that we
do not consider a standard generic ontology that
covers most application cases, although more than
a few have been proposed in the related situation
awareness literature, e.g. (Little and Rogova,
2009; Kokar et al., 2009). As the choice of the
ontology to be used sets the application context,
our framework is kept application-independent
and domain-agnostic.

As we have seen in Section 3, the notion of time is
vital in stream processing applications. Hence, we
argue that the ontology to be chosen should be able
to describe the time an event or a measurement
took place instead of relying to timestamps that
usually denote the time of arrival of a stream
element. The use of such timestamps does not
help sort out the true sequence of events since the
respective notifications may arrive in disorder due
to variable delays in the routing from the source to
the receiver. Ensuring that incoming information
is already annotated with its time of occurrence
handles elegantly the infamous event disorder issue
in data streams, under the assumption that all
disparate sources share a common time reference
frame.

3. A semantic ruleset. Generally, the inclusion of a
set of rules encoding the application or domain-
specific knowledge is optional and depends on the
application designer’s choice. In the SensorStream
case, semantic rules are used to recognize events
or situations of interest and perform some action
according to the current application (e.g. issue
of an alert). The form and syntax of these rules
resembles to the one of the mapping rules presented
above, with the difference that, in the case of the
former, the condition refers to the ontology model.
Example conditions include checks on the existence
or number of individuals for a given class or checks
on the existence of a non-empty result set for
a given SPARQL query. Therefore, the condition
part of SensorStream’s semantic rules can be
replaced by an appropriate SPARQL/Update
query, guaranteeing that an expressiveness equal
to that of SPARQL is achieved.

Windowing is an important decision that has to be
taken since, by definition, streams are unbounded and
cannot fit in memory in order to be processed as usual.
Windowing concerns three important decisions that have
to be taken:

1. The window measurement unit. This choice refers
to the basic unit serving as the window definition
basis. In this aspect, a window can be either
physical or logical. Physical windows are defined
in terms of physical units, which may be tuples in
the case of DSMS or RDF triples in the Semantic
Web context. Logical windows, on the other hand,

as already stated in Section 2, are typically defined
in terms of time units.

SensorStream follows a different path, by defining
windows in terms of the number of knowledge
base individuals they refer to. This point of
view is significantly different from triple-based
physical windows and offers significant benefits.
An individual-based window may not have a fixed
statement length but instead guarantees that all
statements involving an individual are kept in the
current window range. On the contrary, in the
triple-based physical window case, statements are
dropped out of the window based solely on their
timestamp and not on their relationship with other
statements. For example, an incoming statement
might refer to an individual that participates in
older statements already dropped out of the triple-
based window and hence, knowledge about it is
incomplete. An individual-based window decreases
considerably the degree of incompleteness by
dropping out groups of statements that refer to the
oldest individual in the knowledge base.

An individual-based window is defined over a
stream of RDF triples, where every element of the
stream can be written as (< s, p, o >, τ). We first
introduce the individual timestamp tind for a given
entity s and time τ as the timestamp of its most
recent appearance as subject in some RDF triple
of stream S measured in timestamp τ :

tind(s, τ) = {max(t) : (< s, p, o >, t) ∈ S
∧ t ≤ τ} (6)

We then define an individual-based logical window
as the set of the RDF triples that contain as subject
an entity with individual timestamp tind occurring
in the [t1, t2] interval:

w′
l(S, t1, t2) = {(< s, p, o >, τ) ∈ S :

t1 ≤ tind(s, t2) ≤ t2} (7)

From the above, similarly to Equation (2), we
can define an individual-based physical window of
size N as the set of the RDF triples that contain
as subject one of the N most recently appeared
individuals in stream S:

w′
p(S, N, τ) = {w′

l(S, t1, τ) : t1 ≤ τ

∧ |w′
l(S, t1, τ)|I ≤ N

∧ ∀t2 < t1 : |w′
l(S, t2, τ)|I > N} (8)

where | · |I denotes the size in terms of individuals.
The definitions for the sliding, tumbling and
landmark logical windows given in Section 2
can be adapted to the individual-based case,
by replacing typical tuple-based logical windows
wl with individual-based ones w′

l and expressing
window size w and progression step d as a number
of individuals.
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2. The window size. We need to note that the window
size causes a proportional increase in the system
latency and therefore these two parameters have
to be balanced accordingly. On one hand, in order
to process data in real time we would like to have
all the information available in memory but on
the other hand latency should be restricted to
acceptable levels.

3. The window behavior. In (Konstantinou et al.,
2010) a system is investigated where the buffer
is “flushed” after the processing latency exceeded
certain thresholds. This behavior, although
convenient for a large number of cases, it is not
always optimal since maintenance operations
could take place at inconvenient times (e.g.
during the occurrence of an event of interest)
leading to incorrect results. The approach followed
in SensorStream deals with this problem by
maintaining the latest information at all times.

As we will see in the next section, the application
of a window ensures that the response time stays
within some finite bounds. This, of course, happens
at the expense of the amount and completeness of
information stored in the cache Knowledge Base (KB),
upon which the semantic rules are applied. This clearly
prevents us from declaring rules that make use of older
information and thus, we rely solely on the information
kept inside the window. Depending on the application
requirements, different choices of the window size and
the amount of information available at real-time can
be made. For example, in a person tracking application
taking place in a crowded area, a window of 100
ontology individuals might prove insufficient for real-
time recognition of high-level events, while the same
window would probably be satisfactory for the real-time
monitoring of a natural phenomenon. This prevents us
from establishing a general application quality metric,
although we could risk saying that in most cases,
application quality is positively correlated with the
completeness of information and, therefore, with window
size as well.

Regardless of the window choice, and in contrast
with most systems employing windowing techniques,
SensorStream stores older elements that are dropped out
of the current window in a persistent Knowledge Base to
enable historical offline queries, as shown in Figure 2.

In brief, the course of actions taken by our
SensorStream prototype as a new information element
arrives is illustrated in Algorithm 1. When a new stream
element becomes available, reasoning on the current
instance of the cache Knowledge Base must be performed
to ensure that all inferences regarding the new element
are computed. Fortunately, the redundancy implied in
reasoning over successive Knowledge Base instances
can be handled by a reasoner (e.g. Pellet) employing
incremental reasoning techniques. This step is essential
in order to build a system that is both knowledge-aware
and real-time, given that:

• A simple unprocessed message insertion in the
cache knowledge base does not render the system
knowledge-aware, since no implicit information can
be extracted and added as well, without use of a
reasoner.

• The notion of real-time is tightly coupled with
the concepts of event and response time. More
precisely, according to (Dougherty and Laplante,
1995), an event can be defined as “any occurrence
that results in a change in the sequential flow
of program execution” and the response time as
“the time between the presentation of a set of
inputs and the appearance of all the associated
outputs”. Therefore, without reloading the entire
Knowledge Base and performing reasoning on
it, we cannot consider that all the associated
outputs are produced and the system cannot be
classified as real-time. Systems that perform simple
insertions upon each message arrival and scheduled
inferencing at predefined time intervals cannot be
considered real-time, only “near real-time” if these
intervals are frequent enough.

After the reasoning procedure is over, the current
snapshot of the window has to be updated to include
the new element and possibly drop older elements,
depending on the type of window chosen. In the
same time, the elements that were dropped out of
the window are moved to the persistent Knowledge
Base for future reference. Then, the mapping rules
are applied to populate the system’s cache Knowledge
Base. Reasoning and semantic rules’ check is performed
afterwards in order to spot high-level events. As we have
already mentioned, semantic rules can be replaced by
an equivalent SPARQL query. Since semantic rules are
constantly checked for every incoming element, they in
fact encapsulate continuous queries running against the
temporary cache knowledge base.

Algorithm 1 Process Element

if new element arrives then
load cache Knowledge Base
compute new window
copy outdated information to the persistent
Knowledge Base
apply mapping rules
apply semantic rules

end if

5 Performance Evaluation

5.1 Measurement environment

For our measurements we assumed a simple object
tracking application scenario. A data stream in the form
of XML messages containing sensor data is received from
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the server for real time semantic processing and event
recognition. Continuous updates in the ontology carried
out by the execution of the mapping rules allow the
knowledge base to evolve using the information from the
data stream while the semantic rules provide a means for
the use of the complete (initial and inferred) knowledge
for rule-based inferencing, continuous query answering
and event recognition.

The data stream is simulated by means of a client
application who produces and sends at predefined time
intervals XML messages with dummy content that
conform to a specific template shown in the next
subsection.

Our measurements were taken in a lab environment.
The server was an Intel R⃝ CoreTM 2 Quad@2.83GHz,
with 3962 MB total memory running a x86 64 Ubuntu
9.10 OS. The client was running on an Intel R⃝ CoreTM 2
Duo@2.00GHz, with 2012 MB total memory and 32 bit
Ubuntu 9.10 OS. The core components of the Annotation
and Knowledge layers of the SensorStream system, were
implemented using Jena 2.6.2, ARQ 2.8.1 and Pellet
2.0.2 libraries, and MySQL 5.1.37 server.

5.2 Measurement methodology

First, we configure the system with a set of initial,
necessary inputs, that is the ontology, the mapping
rules and the semantic rules. The ontology used was
inspired from the context awareness domain, including
concepts like Actor, Location, and relevant properties
like hasTime, hasLocation, etc. The ontology was
designed to be generic enough to support a system
for human or object tracking in general. Since the
development of a more expressive and richer ontology is
out of the scope of this work, it was kept as minimal as
possible, using only the lightweight ALC(D) Description
Logic language, without General Concept Inclusions
(GCIs) and numbering 31 classes, 3 object properties
and 7 datatype properties, in a total of 110 statements.

The message template of the incoming XML stream,
as shown below with a message example, includes
information about the location, the time and the
confidence of the measurement.

<?xml version=‘1.0’ encoding=‘UTF-8’?>

<Message>

<Event id=‘9’>

<Tracker type=‘FaceTracker’>

<TimeStamp value = ‘2678’/>

<person id=‘2678’ certainty=‘100’ >

<location2d x=‘72’ y=‘8’ />

</person>

</Tracker>

</Event>

</Message>

The XML stream used as the input set for the purpose
of our measurements contains 4000 messages having the
same structure as the above. The mapping rules for

this template and ontology, provide the assertion of an
individual of type Human, with the extracted values from
the XML message serving as values for the datatype
properties hasTime, hasXLocation, hasYLocation,
hasCertainty and hasName. The semantic rule in our
measurements scenario is just checking for the existence
of individuals of the Human class and if there is one
or more, it adds exactly one in the Action class. As
the performance of the system highly depends on the
number and the complexity of rules, the rationale behind
the experiments run was, on one hand, to test the
performance of the system with the presence of all the
features of our architecture but on the other hand, fully
control the complexity introduced by the rules. Thus, our
mapping rule inserts 5 statements with every incoming
message: one for the type definition and four for the
assignment of properties’ values, while our semantic rule
leaves the knowledge base intact, with the exception
of the first run when the class of interest contains no
individuals.

For each experiment, the main variable of interest is
latency. Informally, we define latency as the time elapsed
between the transmission of an XML message from the
information source and the execution of the last semantic
rule in this processing cycle. This time period ttotal
consists of processing time tp performed by the system
and, to a smaller extent, message transmission delay ttr
incurred by the network, as shown in Equation (9).

ttotal(N) = ttr + tp(N) (9)

tp(N) = ti(N) + tw(N) + tm(N) + ts(N) (10)

Furthermore, tp consists of the initialization interval
ti, during which the cache KB is loaded into the memory,
the window selection interval tw, when the time bounds
of the window and its contents are updated and, finally,
the mapping and semantic rules execution intervals, tm
and ts respectively. All the time variables introduced
in Equation (10) are functions of the window size N
(in terms of statements). For every experiment run,
we measure the total latency and the process time
with respect to the number of incoming statements, as
shown in the next subsection. We should clarify here
that we restrict ourselves to one scenario, given that
our intention is the comparison of the overall system
performance with respect to different window types
and varying window sizes. A thorough benchmarking
of the system performance for a given window type
would involve the investigation of different scenarios
with several different application cases of mapping and
semantic rules, varying ontology size and number of
statements to number of individuals ratio, and is thus
considered out of scope for the current paper.

5.3 Results

First, we perform a test in order to assess the system’s
behaviour in the absence of a window. In Figure 3
we illustrate the system’s behaviour with Pellet, that
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employs incremental reasoning techniques to reduce the
total time of the reasoning process. Although this feature
of Pellet reduces radically the response time of the server
and its performance is superior to static tableau-based
reasoning algorithms, it still does not suffice for meeting
the real-time requirements in the case of streaming
data since processing time is shown to increase steadily
with the number of statements in the knowledge base.
As expected, the difference between total latency and
processing time, which accounts for the network delay,
is small and constant throughout the entire test.

For this purpose, we employ and study the efficiency
of two windowing approaches, where the size of the
windows used are measured in terms of the number of
individuals stored in the cache KB, as mentioned in
Section 4. We try an individual-based sliding window
with unit advancement step and an individual-based
“gradually filling” tumbling window and examine how
their size affects the process time of the system. The
advancement step in the sliding window is also defined in
terms of individuals, in other words as a new individual
becomes available, the sliding window progresses by
excluding statements involving the oldest individual in
the knowledge base and including statements referring to
the new one. A random selection occurs when there are
more than one individuals with the oldest timestamp.
Attention though must be drawn to the fact that
the process of maintaining and constantly updating a
window of the incoming stream in-memory places an
additional burden for the knowledge base and constitutes
an overhead for the system.

The “gradually filling” tumbling window has, like
all tumbling windows, a progression step equal to the
window size, but fills gradually as individuals arrive to
the knowledge base instead of waiting to be completely
filled at once. For ease of representation, we give
the definition of a logical “gradually filling” tumbling
window, which can be easily adjusted for the individual-
based case:

wtum,gf (S, w, t0, τ) =
wl(S, t0, τ), t0 ≤ τ < t0 + w

wl(S, τ −mod(τ − t0, w), τ),

t0 + w ≤ τ and mod(τ − t0, w) ̸= 0

wl(S, τ − w, τ), t0 + w ≤ τ and mod(τ − t0, w) = 0

(11)

While formulating a window over a stream in DSMS
is a straightforward procedure, the same does not apply
to the case of a knowledge base. The initial formulation
and constant update of the window is performed with
the aid of SPARQL queries that are kept as lightweight
as possible in order to minimize the overhead imposed
by their execution. For our measurements, the sliding
window was implemented indirectly using the following
SPARQL query to select the older individual in the
knowledge base. All the statements involving the selected
individual are inserted in the persistent KB and then
removed from the cache KB. This SPARQL query is

executed every time a new individual appears, given
the unit progression step of the sliding window. As
mentioned in Section 4, the hasTime property present in
our testing ontology is the property that time-annotates
an individual. In our case, this annotation refers to the
generation time of the incoming message.

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?x

WHERE {?x :hasTime ?time}

ORDER BY xsd:integer(?time) LIMIT 1

Equivalently, we could have used the following
SPARQL/Update query to perform in one step the same
procedure4. However, this query, more complex as it is
with the use of the OPTIONAL pattern matching (Perez
et al., 2006), takes considerably more time to execute
on Jena’s ARQ engine than the previous one. Therefore,
we decided to stick to the indirect two-step windowing
procedure.

PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>

INSERT

{ GRAPH <http://sensorstream/persistent>

{?x ?y ?z} }

WHERE

{ GRAPH <http://sensorstream/cache>

{?x :hasTime ?time .

?x ?y ?z .

OPTIONAL { ?older :hasTime ?otime .

FILTER (xsd:integer(?otime) <

xsd:integer(?time))}

FILTER (!bound(?older))}

WITH <http://sensorstream/cache>

DELETE

{?x ?y ?z}

WHERE

{?x :hasTime ?time .

?x ?y ?z .

OPTIONAL { ?older :hasTime ?otime .

FILTER (xsd:integer(?otime) <

xsd:integer(?time))}

FILTER (!bound(?older))}

In a similar fashion, for the maintenance of the
“gradually filling” tumbling window, we used the
following SPARQL query to first select all individuals
from the cache KB, copy them to the persistent KB and
finally, remove them from the cache KB.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syn

tax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT ?x

WHERE

{?class rdf:type owl:Class. ?x rdf:type ?class}

In the following set of experiments, we show in
Figures 4 and 5 the performance of the system with the
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use of tumbling and sliding windows for sizes of 1000,
5000 and 15000 triples or 191, 991 and 2991 individuals,
respectively. Due to the specific mapping rules used
in the experiment, as explained in Section 5.2, every
individual is involved in 5 statements, hence the number
of statements is approximately 5 times the number
of individuals considered. Next to each performance
diagram, we append the evolution of the number of
statements with the number of incoming messages to
clearly show the performance dependency on the number
of statements in the cache KB.

The peaks that are seen in the process time in Figure
4 show that in the case of a tumbling window, when
reaching the window size and entering a new window
computation stage, the time needed to clear the window
contents is much higher than the typical time needed to
process a single message. This delay is caused by the fact
that in this maintenance stage every individual in the
cache KB is deleted and the whole model of the ontology
is affected. Moreover, as we can see in Figures 4a, 4c,
4e and Table 1, the processing time at the maintenance
stage increases at a high and growing rate, meaning that
a tumbling window needs further improvements in order
to scale for larger datasets. Apart from the performance,
the choice of a tumbling window entails the possibility of
producing a false alarm since, after a maintenance, the
ontology will be back to a pristine state and all previous
information that could possibly lead to an alarm will no
longer be available. Therefore, the use of such a tumbling
window is recommended in cases where a small loss in
captured events is not crucial.

Table 1 Processing time for tumbling and sliding
windows of varying size (measured in number of
statements). Average gradients are shown in
parentheses

Window Size ttump tslp

1000 1250 ms (1.005) 253 ms (0.135)
5000 5270 ms (1.108) 793 ms (0.153)
15000 16348 ms 2306 ms

On the other hand, the behaviour of a sliding window
is more “predictable” and closer to the desired one,
compared to the tumbling window. In Figures 5a, 5c,
5e, the system shows a stable performance, where the
overhead of computing the new window instance is kept
low regardless the size of the window. The average
process time, tslp , in the case of the sliding window, as
shown in Table 1, increases at a relatively small and
almost stable rate as a function of the window size.
While keeping a stable response, the system is able to
make real-time inferences from the newly asserted data,
providing not only improved performance, but also more
accurate real-time entailments. The peaks that are seen
in the figures are caused by turbulences in the testing
environment, leading to variations in network delay.

Finally, in Figure 6, the performance of the two
windowing approaches are juxtaposed to the plain no

window approach for the three window sizes considered
to show the superior performance of the sliding window
approach. The above results, strengthen the view that a
windowing approach over a KB, can be a stable solution
to Semantic Web applications where time is a critical
parameter. Furthermore, our individual-based window
approach provides hints that Semantic Web techniques
can be applied in order to exploit stream semantics and
ameliorate application level quality given the latency
limitation posed by certain real-time applications.

6 Conclusions and Future Work

As streams of data become increasingly available, real-
time solutions are needed to process and combine
streams in order to extract high-level events with
minimal human intervention. In this paper, we presented
a semantic-based framework for dealing with information
streams from heterogeneous sources encoded in various
XML templates and its prototype implementation,
SensorStream. Our framework combines consistently a
number of technologies leading to a powerful solution
for the problem of combining semantic information
in real time. SensorStream does not restrict itself to
an application domain, as the ontology encoding the
knowledge of the domain is configurable and can be
selected and tailored to the application needs. Moreover,
it allows for multiple information sources that store
their output in possibly distinct XML templates. The
syntactic heterogeneity of the latter is handled via
mapping rules that populate the domain ontology
with appropriate individuals. We argued that, given a
common time reference frame shared by all information
sources, incorporating the notion of time in the ontology
allows for annotating each event with its time of
occurrence. This design choice differs significantly from
the traditional timestamps of stream management
systems that are able to capture only the time of arrival
of every message to the system, giving rise to the event
disorder problem.

Two windowing techniques that restrict the unbound
stream to a finite stream subset were borrowed from the
related stream management research field in databases
and adjusted accordingly to the knowledge base context.
What needs to be noted though is the fact that we
do not drop the elements that exit the window but
we store them explicitly in a persistent knowledge base
to allow for future reuse, reference and execution of
historical queries on them. Tests were performed for
various sizes of these two window types, namely the
sliding and “gradually filling” tumbling window, and the
performance of the system was measured. Results have
shown that the sliding window performs better than
the tumbling window and thus, its application meets
the real-time requirements for semantic processing of
information streams. Average process time increases, as
anticipated, as the applied window grows larger, but, as
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the tests suggest, at a lower rate than the window size
increase rate.

Next steps extending SensorStream’s functionality
would include testing of other window types mentioned
in the stream database literature, such as landmark
windows, while we could try to make the appropriate
adjustments to other related techniques that reduce the
volume of a stream, such as filtering or synopses. It
would be interesting to explore how these techniques
would be applied in a knowledge base, taking advantage
of the elements’ properties and the relationships linking
them in order to achieve smarter load shedding.
Furthermore, more extensive tests of our framework
could be performed examining how the ontology’s
complexity and size as well as the complexity of the
applied rules affect the overall system’s performance.

Acknowledgements

Dimitrios-Emmanuel Spanos wishes to acknowledge the
financial support of “Alexander S. Onassis Public Benefit
Foundation”, under its Scholarships Programme.

References

Abadi, D., Ahmad, Y., Balazinska, M., Cetintemel, U.,
Cherniack, M., Hwang, J., Lindner, W., Maskey, A.,
Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y. and
Zdonik, S. (2005). ‘The Design of the Borealis Stream
Processing Engine.’ In: Second Biennial Conference
on Innovative Data Systems Research (CIDR 2005),
Asilomar, CA. ACM.

Allen, B. D., Bishop, G. and Welch, G. (2001). ‘Tracking:
Beyond 15 minutes of thought.’ SIGGRAPH Course
Pack.

Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar,
M., Ito, K., Motwani, R., Srivastava, U. and Widom,
J. (2004). ‘STREAM: The Stanford Data Stream
Management System.’ Technical report, Stanford
InfoLab.

Arasu, A., Babu, S. and Widom, J. (2006). ‘The CQL
Continuous Query Language: Semantic Foundations
and Query Execution.’ The VLDB Journal, vol. 15,
no. 2, pp. 121–142.

Baader, F., Horrocks, I. and Sattler, U. (2005).
Description Logics as Ontology Languages for the
Semantic Web. Heidelberg: Springer Berlin, pp. 228–
248.

Babcock, B., Babu, S., Datar, M., Motwani, R.
and Widom, J. (2002). ‘Models and Issues in
Data Stream Systems.’ Proceedings of the twenty-
first ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems - PODS ’02, pp. 1–
16.

Barbieri, D., Braga, D., Ceri, S., Della Valle, E. and
Grossniklaus, M. (2009). ‘C-SPARQL: SPARQL for
Continuous Querying.’ In: Proceedings of the 18th
International Conference on World Wide Web. ACM
New York, NY, USA, pp. 1061–1062.

Barbieri, D., Braga, D., Ceri, S. and Grossniklaus, M.
(2010). ‘An Execution Environment for C-SPARQL
Queries.’ In: Proceedings of the 13th International
Conference on Extending Database Technology. ACM,
pp. 441–452.

Bizer, C., Heath, T. and Berners-Lee, T. (2009). ‘Linked
Data – the Story so Far.’ International Journal on
Semantic Web and Information Systems, vol. 5, no. 3,
pp. 1–22.

Bolles, A., Grawunder, M. and Jacobi, J. (2008).
‘Streaming SPARQL - Extending SPARQL to Process
Data Streams.’ In: The Semantic Web: Research and
Applications. Springer, pp. 448–462.

Bradski, G. R. (1998). ‘Computer Vision Face Tracking
for Use in a Perceptual User Interface.’ Intel
Technology Journal.

Broekstra, J., Kampman, A. and van Harmelen, F.
(2002). ‘Sesame: A Generic Architecture for Storing
and Querying RDF and RDF Schema.’ In: Horrocks,
I. and Hendler, J. (eds.), Proceedings of the first Int’l
Semantic Web Conference (ISWC 2002), vol. 2342 of
Lecture Notes in Computer Science. Sardinia, Italy:
Springer Verlag, pp. 54–68.

Calder, M., Morris, R. A. and Peri, F. (2010). ‘Machine
Reasoning about Anomalous Sensor Data.’ Ecological
Informatics, vol. 5, no. 1, pp. 9–18.

Carroll, J., Dickinson, I., Dollin, C. and Reynolds,
D. (2004). ‘Jena: Implementing the Semantic
Web Recommendations.’ In: Proceedings of the
13th international World Wide Web conference on
Alternate track papers & posters. pp. 74–83.

Chandrasekaran, S., Cooper, O., Deshpande,
A., Franklin, M., Hellerstein, J., Hong, W.,
Krishnamurthy, S., Madden, S., Raman, V., Reiss,
F. and Shah, M. (2003). ‘TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World.’ In:
Proceedings of the Conference on Innovative Data
Systems Research (CIDR 2003). ACM Press.

Chen, J., DeWitt, D., Tian, F. and Wang, Y. (2000).
‘NiagaraCQ: A Scalable Continuous Query System for
Internet Databases.’ ACM SIGMOD Record, vol. 29,
no. 2, pp. 379–390.

Comaniciu, D. and Meer, P. (1999). ‘Mean shift analysis
and applications.’ In: Proceedings of the Seventh
IEEE International Conference on Computer Vision
(ICCV’99), vol. 2. Kerkyra, Greece: IEEE Computer
Society, pp. 1197–1203.



SensorStream: A Semantic Real-Time Stream Management System 13

Conolly, D. (2007). ‘Gleaning Resource Descriptions
from Dialects of Languages (GRDDL).’ Available
online at http://www.w3.org/TR/grddl/.

Cuenca Grau, B., Halaschek-Wiener, C. and Kazakov,
Y. (2007). ‘History Matters: Incremental Ontology
Reasoning Using Modules.’ In: Aberer, K., Choi,
K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon,
L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi,
R., Schreiber, G. and Cudr-Mauroux, P. (eds.),
Proceedings of the 6th International Semantic Web
Conference (ISWC 2007), vol. 4825 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg,
pp. 183–196.

Das, S. and Srinivasan, J. (2009). ‘Database
Technologies for RDF.’ In: 5th International
Summer School 2009 on Reasoning Web. Semantic
Technologies for Information Systems, LNCS 5689.
pp. 205–221.

Della Valle, E., Ceri, S., van Harmelen, F. and Fensel,
D. (2009). ‘It’s a Streaming World! Reasoning upon
Rapidly Changing Information.’ Intelligent Systems,
IEEE, vol. 24, no. 6, pp. 83–89.

Demers, A., Gehrke, J., Panda, B., Riedewald, M. and
Sharma, V. (2007). ‘Cayuga: A General Purpose Event
Monitoring System.’ In: Proc. CIDR. New York, New
York, USA: ACM Press, pp. 412–422.

Dougherty, E. and Laplante, P. (1995). Introduction
to Real-Time Imaging, chap. What is Real-Time
Processing? Wiley-IEEE Press, pp. 1–9.

Erling, O. and Mikhailov, I. (2010). Virtuoso: RDF
Support in a Native RDBMS. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 501–519.

Ghanem, T., Aref, W. and Elmagarmid, A. (2006).
‘Exploiting Predicate-Window Semantics over Data
Streams.’ ACM SIGMOD Record, vol. 35, no. 1, pp.
3–8.

Gutierrez, C., Hurtado, C. and Vaisman, A. (2007).
‘Introducing Time into RDF.’ IEEE Transactions on
Knowledge and Data Engineering, vol. 19, no. 2, pp.
207–218.

Gyllstrom, D., Wu, E., Chae, H., Diao, Y., Stahlberg,
P. and Anderson, G. (2007). ‘SASE: Complex Event
Processing over Streams.’ In: Proceedings of CIDR.
ACM Press.

Halaschek-Wiener, C., Parsia, B. and Sirin, E. (2006).
‘Description Logic Reasoning with Syntactic Updates.’
In: Meersman, R. and Tari, Z. (eds.), On the Move
to Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE, vol. 4275 of Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 722–737. URL http://www.

springerlink.com/content/g4p2031727154281.

Heintz, F., Kvarnstrom, J. and Doherty, P. (2009).
‘Stream Reasoning in DyKnow: A Knowledge
Processing Middleware System.’ In: 1st International
Workshop on Stream Reasoning. Springer.

Henson, C., Neuhaus, H., Sheth, A., Thirunarayan, K.
and Buyya, R. (2009). ‘An Ontological Representation
of Time Series Observations on the Semantic Sensor
Web.’ In: Proceedings of the 1st Int. Workshop on the
Semantic Sensor Web (SemSensWeb), collocated with
ESWC.

Hobbs, J. and Pan, F. (2006). ‘Time Ontology in
OWL.’ Available online at http://www.w3.org/TR/

owl-time/.

Kokar, M., Matheus, C. and Baclawski, K. (2009).
‘Ontology-based Situation Awareness.’ Information
fusion, vol. 10, no. 1, pp. 83–98.

Konstantinou, N., Solidakis, E., Zafeiropoulos, A.,
Stathopoulos, P. and Mitrou, N. (2010). ‘A
Context-Aware Middleware for Real-Time Semantic
Enrichment of Distributed Multimedia Metadata.’
Multimedia Tools and Applications, vol. 46, no. 2-3,
pp. 425–461.

Le-Phuoc, D. and Hauswirth, M. (2009). ‘Linked Open
Data in Sensor Data Mashups.’ In: Proceedings
Semantic Sensor Networks.

Li, J., Maier, D., Tufte, K., Papadimos, V. and Tucker,
P. A. (2005). ‘Semantics and Evaluation Techniques
for Window Aggregates in Data Streams.’ Proceedings
of the 2005 ACM SIGMOD international conference
on Management of data - SIGMOD ’05, pp. 311–322.

Lien, C. C., Chiang, C. L. and Lee, C. H. (2007). ‘Scene-
based Event Detection for Baseball Videos.’ Journal
of Visual Communication and Image Representation,
vol. 18, no. 1, pp. 1–14.

Liggins, M. E., Hall, D. L. and Llinas, J. (eds.) (2009).
Handbook of Multisensor Data Fusion: Theory and
Practice. CRC Press.

Little, E. and Rogova, G. (2009). ‘Designing Ontologies
for Higher Level Fusion.’ Information Fusion, vol. 10,
no. 1, pp. 70–82.

Liu, L., Pu, C. and Tang, W. (1999). ‘Continual
Queries for Internet Scale Event-Driven Information
Delivery.’ IEEE Transactions on Knowledge and Data
Engineering, vol. 11, no. 4, pp. 610–628.

Maier, D., Tucker, P. and Garofalakis, M. (2005).
‘Filtering, Punctuation, Windows and Synopses.’ In:
Stream Data Management. pp. 35–58.

Motik, B., Grau, B. C., Horrocks, I., Wu, Z., Fokoue, A.
and Lutz, C. (2009). ‘OWL 2 Web Ontology Language
Profiles.’ Available online at http://www.w3.org/TR/
2009/PR-owl2-profiles-20090922/.



14 D.E. Spanos, P. Stavrou, N. Konstantinou, and N. Mitrou

Motik, B., Sattler, U. and Studer, R. (2005). ‘Query
Answering for OWL-DL with rules.’ Web Semantics:
Science, Services and Agents on the World Wide Web,
vol. 3, no. 1, pp. 41–60.

Papamarkos, G., Poulovassilis, A. and Wood, P. T.
(2003). ‘Event-Condition-Action Rule Languages for
the Semantic Web.’ In: Workshop on Semantic Web
and Databases. Springer, pp. 309–327.

Parsia, B., Halaschek-Wiener, C. and Sirin, E. (2006).
‘Towards Incremental Reasoning Through Updates in
OWL-DL.’ In: Proceedings of the Reasoning on the
Web Workshop at WWW 2006. pp. 1–6.

Patroumpas, K. and Sellis, T. (2006). ‘Window
Specification over Data Streams.’ In: International
Conference on Semantics of a Networked World:
Semantics of Sequence and Time Dependent Data
(ICSNW’06). Springer, pp. 445–464.

Perez, J., Arenas, M. and Gutierrez, C. (2006).
‘Semantics and Complexity of SPARQL.’ In:
Proceedings of the International Semantic Web
Conference (ISWC 2006). Springer, pp. 30–43.

Prud’hommeaux, E. and Seaborne, A. (2008). ‘SPARQL
Query Language for RDF.’ Available online at http:
//www.w3.org/TR/rdf-sparql-query/.

Pugliese, A., Udrea, O. and Subrahmanian, V. S. (2008).
‘Scaling RDF with Time.’ Proceedings of the 17th
international conference on World Wide Web - WWW
’08, pp. 605–614.

Rodriguez, A., McGrath, R., Liu, Y. and Myers,
J. (2009). ‘Semantic Management of Streaming
Data.’ In: Workshop on Semantic Sensor Nets
at International Semantic Web Conference. CEUR-
WS.org.

Sirin, E., Parsia, B., Kalyanpur, A., Grau, B. and Katz,
Y. (2007). ‘Pellet: A Practical OWL-DL Reasoner.’
Web Semantics: Science, Services and Agents on the
World Wide Web, vol. 5, no. 2, pp. 51–53.

Tsarkov, D. and Horrocks, I. (2006). ‘FaCT++
Description Logic Reasoner: System Description.’ In:
Proc. of the Int. Joint Conf. on Automated Reasoning
(IJCAR 2006), volume 4130 of Lecture Notes in
Artificial Intelligence. Springer, pp. 292–297.

Volz, R., Staab, S. and Motik, B. (2005). ‘Incrementally
maintaining materializations of ontologies stored in
logic databases.’ Journal on Data Semantics II, pp.
1–34.

Walavalkar, O., Joshi, A., Finin, T. and Yesha, Y. (2008).
‘Streaming Knowledge Bases.’ In: Proceedings of the
Fourth International Workshop on Scalable Semantic
Web knowledge Base Systems. Springer.

Whitehouse, K., Zhao, F. and Liu, J. (2006). ‘Semantic
Streams: A Framework for Composable Semantic
Interpretation of Sensor Data.’ In: Lecture Notes In
Computer Science 3868. Springer, pp. 5–20.

Zhang, D. and Chang, S. F. (2002). ‘Event Detection
in Baseball Video Using Superimposed Caption
Recognition.’ In: Proceedings of the tenth ACM
international conference on Multimedia. ACM New
York, NY, USA, pp. 315–318.

Notes

1W3C Web Services Activity, http://www.w3.org/2002/ws/
2NoSQL databases do not typically provide any declarative
query language equivalent to SQL.

3OWLJessKB, http://edge.cs.drexel.edu/assemblies/
software/owljesskb/

4Since Jena’s ARQ engine does not allow update nested
queries, the alternative is a much more unintuitive query
which finds as well the oldest individual in the knowledge
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Figure 3: Performance and number of statements without windowing. Raw model refers to the initial model while
inferred refers to the model after the reasoning procedure.
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Figure 4: Performance and number of statements for “gradually filling” tumbling window of various sizes. Raw model
refers to the initial model while inferred refers to the model after the reasoning procedure.
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Figure 5: Performance and number of statements for unit step sliding window of various sizes. Raw model refers to
the initial model while inferred refers to the model after the reasoning procedure.
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Figure 6: Comparison of performances for the three methods for various window sizes.


