

Transient and Persistent RDF Views over Relational Databases in the Context of Digital Repositories

Nikolaos Konstantinou, Dimitrios-Emmanuel Spanos, Nikolas Mitrou

Co-financed by Greece and the European Union

Outline

- Introduction
- Evaluation
- Conclusions

(Linked) Open Data (1/2)

- A shift toward openness in numerous domains
 - Cultural heritage (europeana.eu)
 - Governance (data.gov.uk)
 - News (guardian.co.uk/data)
- Mature technological building blocks
 - W3C Recommendations
 - HTTP, XML, RDF, SPARQL, R2RML

(Linked) Open Data (2/2)

- Richer expressiveness
 - Describing and querying information
- Ease of synthesis (integration, fusion, mashups)
- Semantic enrichment
- Inference (implicit vs explicit facts)
- Reusability by third parties
- Content can be linked
 - And be part of broader contexts

The Problem: Data Mapping

- Data mapping and synchronization between databases and RDF
- R2RML (RDB to RDF Mapping Language)
 - A standardized way to express relational-to-RDF mappings
 - Relatively new standard
 - W3C recommendation as of Sept. 2012
 - Reusable mapping definitions
 - Supported by numerous tools
 - Db2triples, D2RQ, Ultrawrap, Virtuoso, R2RML Parser etc.

Methodological Approach (1/2)

- Dilemma: Transient or Persistent RDF views?
- Transient RDF Views
 - Offered on top of the data
 - The RDF graph is implied (not materialized)
 - Queries on the RDF graph are answered with data originating from the actual dataset
 - Similar to the concept of SQL views
 - Typically involve SPARQL-to-SQL query translation

Methodological Approach (2/2)

- Persistent RDF Views
 - The data is exported (dumped) asynchronously
 - Similar to the materialized view in databases
 - Need for manual synchronization
 - Queries on the RDF graph are answered on the dump, therefore
 - Results from the RDF graph may differ from actual dataset

Outline

- □ Introduction
- Evaluation
- Conclusions

Experiments Setup

- Linux Server
- 3 separate DSpace (dspace.org) installations
 - 1k, 10k, 100k items and users, respectively
 - Random-generated text-values in metadata field values and person names
- Open-source tools involved
 - Postgresql
 - D2RQ experimental
 - R2RML Parser
 - Virtuoso Universal Server

D2RQ Experimental

- Open-source, written in Java, available at d2rq.org/download
- Offers transient RDF views over relational databases, runs as a server
 - Supports D2RQ Mapping language and R2RML
- Allows dumping relational database contents as persistent RDF based on the mappings
- R2RML support is still experimental
 - http://sourceforge.net/mailarchive/message.php?ms g_id=30185355

R2RML Parser (1/2)

- An open-source R2RML implementation
- A command-line tool
 - In Java, uses the Jena Semantic Web framework
 - Exports relational database contents into RDF graphs, based on an R2RML mapping document
- Supports MySQL and Postgresql
- Output can be written in RDF or relational database
- See https://github.com/nkons/r2rml-parser

R2RML Parser (2/2)

- Allows arbitrary SQL queries to be used as logical views, including SQL functions and foreign keys
- Limitations
 - No SQL query nesting, union, intersection or difference
 - No multiple graphs from a single execution
 - Covers not all but most of the R2RML constructs (See https://github.com/nkons/r2rml-parser/wiki)
- Does not support transient RDF Views, (i.e. no on-the-fly SPARQL-to-SQL translations)

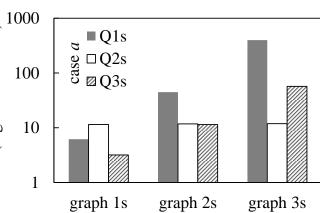
Virtuoso Universal Server

- Mature, enterprise-level software
- Open-source and commercial version
- Extensible, includes Sponger RDF-iser, a reasoning engine, supports clustering, etc
- Can be used as a relational database and/or a triplestore
- Offers RDF Views using R2RML
 - Subject to several limitations

Simple R2RML Mapping Example

```
@prefix map: <#>.
@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix dcterms: <http://purl.org/dc/terms/>.
map:persons-groups
    rr:logicalTable [ rr:tableName '"epersongroup2eperson"'; ];
    rr:subjectMap [
        rr:template 'http://data.example.org/repository/group/{"eperson_group_id"}';
    ];
    rr:predicateObjectMap [
        rr:predicate foaf:member;
        rr:objectMap [ rr:template
'http://data.example.org/repository/person/{"eperson_id"}';
        rr:termType rr:IRI; ] ].
```

rsongroup2eperson		id [PK] integer		erson_group_id eger		erson_id teger
ebe	1	499501	1		1	
p2	2	499502	1		2	
rou	3	499503	1		3	
ng	4	499504	1		4	
ırsc	5	499505	1		5	
eper	6	499506	1/		6	
		· ·				

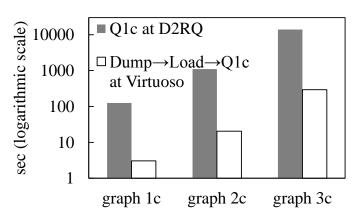

Complex R2RML Mapping Example

```
<#dc-creator-view>
map:dc-contributor
                                                         rr:sqlQuery """
  rr:logicalTable <#dc-creator-view>;
                                                         SELECT h.handle AS handle,
  rr:subjectMap [
                                                                mv.text value AS text value
     rr:template
 'http://data.example.org/repository/item/{"handle"}'; FROM handle AS h, item AS i,
                                                          metadatavalue AS mv,
  ];
                                                          metadataschemaregistry AS msr,
  rr:predicateObjectMap [
                                                          metadatafieldregistry AS mfr
     rr:predicate dcterms:creator;
                                                         WHERE
     rr:objectMap [ rr:column '"text value"' ];
                                                           i.in archive=TRUE AND
                                                           h.resource id=i.item id AND
    handle
                     text value
    character varying(256) text
                                                           h.resource type id=2 AND
    123456789/3
                     krrvwkqxfdtmctv vtczgnkolzc m
                                                           msr.metadata schema id=mfr.metadata schema id AND
                     eixfkv bvvnqecsdlnygbwldrxaelcxpx fqydnh
    123456789/3
                                                           mfr.metadata field id=mv.metadata field id AND
                    itc kcoffmphjbqpcz squgsonbuzqbij
    123456789/4
   123456789/4
                     kfitk zi
                                                           mv.text value is not null AND
                                                           i.item id=mv.item id AND
<http://data.example.org/repository/item/123456789/3>
  dcterms:creator
                                                           msr.namespace=
    "krrvwkqxfdtmctv vtczgnkolzc m" ,
                                                           'http://dublincore.org/documents/dcmi-terms/' AND
    "eixfkv bvvnqecsdlnyqbwldrxaelcxpx fgydnh";
                                                           mfr.element='creator' AND
<http://data.example.org/repository/item/123456789/4>
                                                           mfr.qualifier IS NULL
  dcterms: creator
    "itc kcoffmphjbqpcz squqsonbuzqbij",
    "kfitk zi";
```

Simple mapping results

- Case a: Transient views, using D2RQ, over PostgreSQL, and an R2RML mapping
- Case b: Persistent RDF views, using Virtuoso, over an RDF dump of the database
- Case c: Transient views, using Virtuoso, over its relational database backend, and an R2RML mapping

Q1s 6.18 0.1 0.56 44.75 0.31 0.88 398.74 2.31 3.8 Q2s 11.4 0.07 2310 11.76 0.08 3522 11.91 0.12 4358 Q3s 3.18 0.04 0.22 11.44 0.04 0.68 57.08 0.04 1.28											(e)
			Graph 1	S	Graph 2s			Graph 3s			scale)
	Q1s	6.18	0.1	0.56	44.75	0.31	0.88	398.74	2.31	3.8	mic
	Q2s		0.07	2310	11.76	0.08	3522	11.91	0.12	4358	garith
a b c a b c a b c	Q3s	3.18	0.04	0.22	11.44	0.04	0.68	57.08	0.04	1.28	(10g
		а	b	С	а	b	С	а	b	С	sec



Complex mapping results

- Case 1: D2RQ (transient RDF view)
- Case 2: Export data into RDF using R2RML Parser, load it into Virtuoso (persistent RDF view), then execute SPARQL query

S				
database RDF	Graph	Triples	D2RQ	R2RML Parser
data RD	1c	16,482	3.15	0.914
F 원	2c	159,840	28.96	7.732
Export (into	3c	1,592,790	290.92	80.442
ıĭi -				

요。	Graph	Load into Virtuoso
l into loso	1c	1.87
)ac irt	2c	11.04
۷ >	3c	201.03

		Gr	aph 1c	Gra	aph 2c	(Braph 3c		
اح ک <u>ا</u>	Q1c	125.34	0.27	1100.58	1.77	13921.64	11.18		
ARQI	Q2c	0.34	0.048	0.35	0.05	1.04	0.05		
SP,	Q3c	144.01	0.13	1338.84	2.19	>6h	10.19		
0,		D2RQ	Virtuoso	D2RQ	Virtuoso	D2RQ	Virtuoso		
	7th Metadata and Semantics Research Conference (MTSR'13)								

Outline

- □ Introduction
- Evaluation
- Conclusions

Conclusions (1/2)

- On-the-fly SPARQL-to-SQL conversions still are slow
 - There is much room for improvement in SPARQLto-SQL translations
- Queries over RDF dumps perform significantly faster
 - Especially when SPARQL queries involve many triple patterns that are translated to many JOIN statements

Conclusions (2/2)

- Virtuoso transient RDF views perform well, but
 - Open-source version does not allow connection to external databases
 - No arbitrary SQL queries as logical tables
- In digital repositories:
 - Persistent RDF views (dumps) are preferable to transient (on-the-fly SPARQL-to-SQL translations)
 - Changes are not as frequent as to justify the burden caused by round-trips to the database
 - The trade-off in data freshness is remedied by the improvement in query answering

Open Research

- Reproducible results
- Datasets and software tools used for this work are online
- You can find here:
 - http://www.cn.ntua.gr/~nkons/mtsr2013/
 - The software that was used
 - Database SQL dumps
 - The R2RML mapping files
 - The RDF graphs that were generated
 - The SPARQL queries that were used to evaluate the results

Thank you for your attention!

Questions?