
An Approach for the Incremental
Export of Relational Databases

into RDF Graphs
N. Konstantinou, D.-E. Spanos, D. Kouis, N. Mitrou

National Technical
University of Athens

13th Hellenic Data Management Symposium (HDMS'15)

About this work

 Started as a project in 2012 in the National Documentation Centre, to
offer Linked Data views over its contents

 Evolved as a standards-compliant open-source tool

 First results presented in IC-ININFO’13 and MTSR’13

 Journal paper of the presentation of the software used was awarded an
Outstanding Paper Award

 Latest results presented in WIMS’14

 Revised and extended version in a special issue in IJAIT (2015)

13th Hellenic Data Management Symposium (HDMS'15) 2

Outline

 Introduction

 Background

 Proposed Approach

 Measurements

 Conclusions

13th Hellenic Data Management Symposium (HDMS'15) 3

Introduction

 Information collection, maintenance and update is not always taking
place directly at a triplestore, but at a RDBMS

 It can be difficult to change established methodologies and systems
 Especially in less frequently changing environments, e.g. libraries

 Triplestores are often kept as an alternative content delivery channel

 Newer technologies need to operate side-by-side to existing ones before
migration

13th Hellenic Data Management Symposium (HDMS'15) 4

Mapping Relational Data to RDF

 Synchronous or Asynchronous RDF Views

 Real-time SPARQL-to-SQL or Querying the RDF dump using SPARQL

 Queries on the RDF dump are faster in certain conditions, compared to
round-trips to the database

 Difference in the performance more visible when SPARQL queries involve
numerous triple patterns (which translate to expensive JOIN statements)

 In this paper, we focus on the asynchronous approach
 Exporting (dumping) relational database contents into an RDF graph

13th Hellenic Data Management Symposium (HDMS'15) 5

Incremental Export into RDF (1/2)

 Problem
 Avoid dumping the whole database contents every time

 In cases when few data change in the source database, it is not necessary to dump
the entire database

 Approach
 Every time the RDF export is materialized

 Detect the changes in the source database or the mapping definition

 Insert/delete/update only the necessary triples, in order to reflect these changes in the
resulting RDF graph

613th Hellenic Data Management Symposium (HDMS'15)

Incremental Export into RDF (2/2)

 Incremental transformation
 Each time the transformation is executed, only the part in the database that

changed should be transformed into RDF

 Incremental storage
 Storing (persisting) to the destination RDF graph only the triples that were modified

and not the whole graph

 Possible only when the resulting RDF graph is stored in a relational database or
using Jena TDB

713th Hellenic Data Management Symposium (HDMS'15)

Outline

 Introduction

 Background

 Proposed Approach

 Measurements

 Conclusions

13th Hellenic Data Management Symposium (HDMS'15) 8

Reification in RDF

13th Hellenic Data Management Symposium (HDMS'15) 9

<http://data.example.or
g/repository/person/1>

"John Smith"

<http://data.example.or
g/repository/person/1>

foaf:name

"John Smith"

blank
node

rdf:Statement

foaf:name

rdf:type

rdf:subject

rdf:predicate

rdf:object

<http://data.example.org/repository/person/1>
foaf:name "John Smith" .

becomes

[] a rdf:Statement ;
rdf:subject

<http://data.example.org/repository/person/1> ;
rdf:predicate foaf:name ;
rdf:object "John Smith" ;
dc:source map:persons .

Reification in RDF

13th Hellenic Data Management Symposium (HDMS'15) 10

<http://data.example.or
g/repository/person/1>

"John Smith"

<http://data.example.or
g/repository/person/1>

foaf:name

"John Smith"

blank
node

rdf:Statement
map:persons

foaf:name

rdf:type

rdf:subject

rdf:predicate

rdf:object

dc:source

<http://data.example.org/repository/person/1>
foaf:name "John Smith" .

becomes

[] a rdf:Statement ;
rdf:subject

<http://data.example.org/repository/person/1> ;
rdf:predicate foaf:name ;
rdf:object "John Smith" ;
dc:source map:persons .

 Ability to annotate every triple

 E.g. the mapping definition that produced it

R2RML

 RDB to RDF
Mapping Language

 A W3C
Recommendation,
as of 2012

 Mapping
documents
contain sets of
Triples Maps

13th Hellenic Data Management Symposium (HDMS'15) 11

RefObjectMap

TriplesMap

PredicateObjectMap

SubjectMap

Generated Triples
Generated Output Dataset

GraphMap

Join

ObjectMap

PredicateMap

LogicalTable

Triples Maps in R2RML (1)

 Reusable mapping definitions
 Specify a rule for translating each row of a

logical table to zero or more RDF triples

 A logical table is a tabular SQL query result
set that is to be mapped to RDF triples

 Execution of a triples map generates the
triples that originate from the specific
result set

1213th Hellenic Data Management Symposium (HDMS'15)

Triples Maps in R2RML (2)

 An example

13th Hellenic Data Management Symposium (HDMS'15)

map:persons
rr:logicalTable [rr:tableName '"eperson"';];
rr:subjectMap [

rr:template 'http://data.example.org/repository/person/{"eperson_id"}';
rr:class foaf:Person;];

rr:predicateObjectMap [
rr:predicate foaf:name;
rr:objectMap [rr:template '{"firstname"} {"lastname"}' ;

rr:termType rr:Literal;]].

13

An R2RML Mapping Example
@prefix map: <#>.

@prefix rr: <http://www.w3.org/ns/r2rml#>.

@prefix dcterms: <http://purl.org/dc/terms/>.

map:persons-groups

rr:logicalTable [rr:tableName '"epersongroup2eperson"';];

rr:subjectMap [

rr:template 'http://data.example.org/repository/group/{"eperson_group_id"}';

];

rr:predicateObjectMap [

rr:predicate foaf:member;

rr:objectMap [rr:template 'http://data.example.org/repository/person/{"eperson_id"}';

rr:termType rr:IRI;]].

<http://data.example.org/repository/group/1> foaf:member
<http://data.example.org/repository/person/1> ,
<http://data.example.org/repository/person/2> ,
<http://data.example.org/repository/person/3> ,
<http://data.example.org/repository/person/4> ,
<http://data.example.org/repository/person/5> ,
<http://data.example.org/repository/person/6> .

Ta
bl

e
ep

er
so

ng
ro

up
2e

pe
rs

on

14

Outline

 Introduction

 Background

 Proposed Approach

 Measurements

 Conclusions

13th Hellenic Data Management Symposium (HDMS'15) 15

The R2RML Parser tool

 An R2RML implementation
 Command-line tool that can export relational database contents as RDF

graphs, based on an R2RML mapping document
 Open-source (CC BY-NC), written in Java

 Publicly available at https://github.com/nkons/r2rml-parser

 Worldwide interest (Ontotext, Abbvie, Financial Times)

 Tested against MySQL, PostgreSQL, and Oracle
 Output can be written in RDF/OWL

 N3, Turtle, N-Triple, TTL, RDF/XML(-ABBREV) notation, or Jena TDB backend

 Covers most (not all) of the R2RML constructs (see the wiki)
 Does not offer SPARQL-to-SQL translations 16

https://github.com/nkons/r2rml-parser
https://github.com/nkons/r2rml-parser/wiki

Information Flow (1)

 Parse the source database contents into result sets

 According to the R2RML Mapping File, the Parser generates a set of
instructions to the Generator

 The Generator instantiates in-memory the resulting RDF graph

 Persist the generated RDF graph into
 An RDF file in the Hard Disk, or

 In Jena’s relational database (eventually rendered obsolete), or

 In Jena’s TDB (Tuple Data Base, a custom implementation of B+ trees)

 Log the results

Parser GeneratorMapping
fileSource database

RDF graph

TDB

R2RML Parser

Target database

Hard Disk

17

Information Flow (2)

 Overall generation time is the sum of the following:
 t1: Parse mapping document

 t2: Generate Jena model in memory

 t3: Dump model to the destination medium

 t4: Log the results

 In incremental transformation, the log file contains the reified model

 A model that contains only reified statements

 Statements are annotated with the Triples Map URI that produced them

1813th Hellenic Data Management Symposium (HDMS'15)

Incremental RDF Triple Transformation

 Basic challenge
 Discover, since the last time the incremental RDF

generation took place
 Which database tuples were modified

 Which Triples Maps were modified

 Then, perform the mapping only for this altered subset

 Ideally, we should detect the exact changed
database cells and modify only the respectively
generated elements in the RDF graph
 However, using R2RML, the atom of the mapping definition

becomes the Triples Map

a b c d e

.

.

.

.

.

s p O
. . .

. . .

. . .

.

. . .

. . .

. . .

. . .

. . .

. . .

Triples Map

Result
set

Triples

11

13th Hellenic Data Management Symposium (HDMS'15)

Incremental transformation

 Possible when the resulting RDF graph is persisted on the hard disk

 The algorithm does not run the entire set of triples maps
 Consult the log file with the output of the last run of the algorithm

 MD5 hashes of triples maps definitions, SELECT queries, and respective query resultsets

 Perform transformations only on the changed data subset

 I.e. triples maps for which a change was detected

 The resulting RDF graph file is erased and rewritten on the hard disk

 Retrieve unchanged triples from the log file
 Log file contains a set of reified statements, annotated as per source Triples Maps

definition

13th Hellenic Data Management Symposium (HDMS'15) 20

Incremental storage

 Store changes without rewriting the whole graph

 Possible when the resulting graph is persisted in an RDF store
 Jena’s TDB in our case

 The output medium must allow additions/deletions/modifications at the triples level

13th Hellenic Data Management Symposium (HDMS'15) 21

Proposed Approach

 For each Triples Map in the Mapping Document
 Decide whether we have to produce the resulting triples, based on the logged MD5

hashes

 Dumping to the Hard Disk
 Initially, generate the number of RDF triples that correspond to the source

database

 RDF triples are logged and annotated as reified statements

 Incremental generation

 In subsequent executions, modify the existing reified model, by reflecting only the
changes in the source database

 Dumping to a database or to TDB
 No log is needed, storage is incremental by default

22

Outline

 Introduction

 Background

 Proposed Approach

 Measurements

 Conclusions

13th Hellenic Data Management Symposium (HDMS'15) 23

Measurements Setup

 An Ubuntu server, 2GHz dual-core, 4GB RAM

 Oracle Java 1.7, Postgresql 9.1, Mysql 5.5.32

 7 DSpace (dspace.org) repositories
 1k, 5k, 10k, 50k, 100k, 500k, 1m items, respectively

 Random data text values (2-50 chars) populating a random number (5-30) of Dublin
Core metadata fields

 A set of SQL queries: complicated, simplified, and simple
 In order to deal with database caching effects, the queries were run several times,

prior to performing the measurements
2413th Hellenic Data Management Symposium (HDMS'15)

Query Sets

 Complicated
 3 expensive JOIN conditions

among 4 tables

 4 WHERE clauses

 Simplified
 2 JOIN conditions among 3 tables

 2 WHERE clauses

 Simple
 No JOIN or WHERE conditions

SELECT i.item_id AS item_id, mv.text_value AS text_value
FROM item AS i, metadatavalue AS mv,
metadataschemaregistry
AS msr, metadatafieldregistry AS mfr WHERE
msr.metadata_schema_id=mfr.metadata_schema_id AND
mfr.metadata_field_id=mv.metadata_field_id AND
mv.text_value is not null AND
i.item_id=mv.item_id AND
msr.namespace='http://dublincore.org/documents/dcmi-
terms/'
AND mfr.element='coverage'
AND mfr.qualifier='spatial'

SELECT i.item_id AS item_id, mv.text_value AS text_value
FROM item AS i, metadatavalue AS mv,
metadatafieldregistry AS mfr WHERE
mfr.metadata_field_id=mv.metadata_field_id AND
i.item_id=mv.item_id AND
mfr.element='coverage' AND
mfr.qualifier='spatial'

SELECT "language", "netid", "phone",
"sub_frequency","last_active", "self_registered",
"require_certificate", "can_log_in", "lastname",
"firstname", "digest_algorithm", "salt", "password",
"email", "eperson_id"
FROM "eperson" ORDER BY "language"

Q1: 28.32 *

Q2: 21.29 *

Q3: 12.52 *
* Score obtained using PostgreSQL’s EXPLAIN

Measurements Results

 Exporting to an RDF File

 Exporting to a Relational Database

 Exporting to Jena TDB

13th Hellenic Data Management Symposium (HDMS'15) 26

Exporting to an RDF File (1)

 Export to an RDF file

 Simple and complicated queries,
initial export

 Initial incremental dumps take more
time than non-incremental, as the
reified model also has to be created

0

100

200

300

400

500

600

700

1000 5000 10000

source database rows

non-ncremental

incemental

0
5

10
15
20
25
30
35
40

3000 15000 30000 150000 300000
result model triples

non-incremental

incremental

2713th Hellenic Data Management Symposium (HDMS'15)

n non-incremental mapping
transformation

a incremental, for the initial time

b 0/12 (no changes)

c 1/12

d 3/12

e 6/12

f 9/12

g 12/12

0

100

200

300

400

500

600

700

n a b c d e f g

1000 items 5000 items 10000 items

Exporting to an RDF File (2)

 12 Triples Maps

Data change
0

50

100

150

200

250

300

350

n a b c d e f g

complicated mappings simpler mappings

28

0
100
200
300
400
500
600
700
800
900

n a b c d e f g

RDF file database jena TDB

0

2000

4000

6000

8000

a b c d e f g

database jena TDB

Exporting to a Database
and to Jena TDB
 Jena TDB is the optimal approach

regarding scalability

29

~180k triples

~1.8m triples13th Hellenic Data Management Symposium (HDMS'15)

Outline

 Introduction

 Background

 Proposed Approach

 Measurements

 Conclusions

13th Hellenic Data Management Symposium (HDMS'15) 30

Conclusions (1)

 The approach is efficient when data freshness is not crucial and/or
selection queries over the contents are more frequent than the updates

 The task of exposing database contents as RDF could be considered similar
to the task of maintaining search indexes next to text content

 Third party software systems can operate completely based on the
exported graph
 E.g. using Fuseki, Sesame, Virtuoso

 TDB is the optimal solution regarding scalability

 Caution is still needed in producing de-referenceable URIs

31

Conclusions (2)

 On the efficiency of the approach for storing RDF on the Hard Disk
 Good results for mappings (or queries) that include (or lead to) expensive SQL queries

 E.g. with numerous JOIN statements

 For changes that can affect as much as ¾ of the source data

 Limitations

 By physical memory

 Scales up to several millions of triples, does not qualify as “Big Data”

 Formatting of the logged model did affect performance

 RDF/XML and TTL try to pretty-print the result, consuming extra resources

 N-TRIPLES is optimal

3213th Hellenic Data Management Symposium (HDMS'15)

Future Work

 Hashing Result sets is expensive
 Requires re-run of the query, adds an “expensive” ORDER BY clause

 Further study the impact of SQL complexity on the performance

 Investigation of two-way updates
 Send changes from the triplestore back to the database

3313th Hellenic Data Management Symposium (HDMS'15)

Questions?

3413th Hellenic Data Management Symposium (HDMS'15)

	An Approach for the Incremental Export of Relational Databases into RDF Graphs
	About this work
	Outline
	Introduction
	Mapping Relational Data to RDF
	Incremental Export into RDF (1/2)
	Incremental Export into RDF (2/2)
	Outline
	Reification in RDF
	Reification in RDF
	R2RML
	Triples Maps in R2RML (1)
	Triples Maps in R2RML (2)
	An R2RML Mapping Example
	Outline
	The R2RML Parser tool
	Information Flow (1)
	Information Flow (2)
	Incremental RDF Triple Transformation
	Incremental transformation
	Incremental storage
	Proposed Approach
	Outline
	Measurements Setup
	Query Sets
	Measurements Results
	Exporting to an RDF File (1)
	Exporting to an RDF File (2)
	Exporting to a Database�and to Jena TDB
	Outline
	Conclusions (1)
	Conclusions (2)
	Future Work
	Questions?

