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About this work

 Started as a project in 2012 in the National Documentation Centre, to 
offer Linked Data views over its contents

 Evolved as a standards-compliant open-source tool

 First results presented in IC-ININFO’13 and MTSR’13

 Journal paper of the presentation of the software used was awarded an 
Outstanding Paper Award

 Latest results presented in WIMS’14

 Revised and extended version in a special issue in IJAIT (2015)
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Introduction

 Information collection, maintenance and update is not always taking 
place directly at a triplestore, but at a RDBMS

 It can be difficult to change established methodologies and systems
 Especially in less frequently changing environments, e.g. libraries

 Triplestores are often kept as an alternative content delivery channel

 Newer technologies need to operate side-by-side to existing ones before 
migration
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Mapping Relational Data to RDF

 Synchronous or Asynchronous RDF Views

 Real-time SPARQL-to-SQL or Querying the RDF dump using SPARQL

 Queries on the RDF dump are faster in certain conditions, compared to 
round-trips to the database

 Difference in the performance more visible when SPARQL queries involve 
numerous triple patterns (which translate to expensive JOIN statements)

 In this paper, we focus on the asynchronous approach
 Exporting (dumping) relational database contents into an RDF graph
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Incremental Export into RDF (1/2)

 Problem
 Avoid dumping the whole database contents every time

 In cases when few data change in the source database, it is not necessary to dump 
the entire database

 Approach
 Every time the RDF export is materialized

 Detect the changes in the source database or the mapping definition

 Insert/delete/update only the necessary triples, in order to reflect these changes in the 
resulting RDF graph
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Incremental Export into RDF (2/2)

 Incremental transformation
 Each time the transformation is executed, only the part in the database that 

changed should be transformed into RDF

 Incremental storage
 Storing (persisting) to the destination RDF graph only the triples that were modified 

and not the whole graph

 Possible only when the resulting RDF graph is stored in a relational database or 
using Jena TDB
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Reification in RDF
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<http://data.example.or
g/repository/person/1>

"John Smith"

<http://data.example.or
g/repository/person/1>

foaf:name

"John Smith"

blank 
node

rdf:Statement

foaf:name

rdf:type

rdf:subject

rdf:predicate

rdf:object

<http://data.example.org/repository/person/1> 
foaf:name "John Smith" .

becomes

[] a rdf:Statement ;
rdf:subject

<http://data.example.org/repository/person/1> ;
rdf:predicate foaf:name ;
rdf:object "John Smith" ;
dc:source map:persons .



Reification in RDF
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<http://data.example.or
g/repository/person/1>

"John Smith"

<http://data.example.or
g/repository/person/1>

foaf:name

"John Smith"

blank 
node

rdf:Statement
map:persons

foaf:name

rdf:type

rdf:subject

rdf:predicate

rdf:object

dc:source

<http://data.example.org/repository/person/1> 
foaf:name "John Smith" .

becomes

[] a rdf:Statement ;
rdf:subject

<http://data.example.org/repository/person/1> ;
rdf:predicate foaf:name ;
rdf:object "John Smith" ;
dc:source map:persons .

 Ability to annotate every triple

 E.g. the mapping definition that produced it



R2RML

 RDB to RDF 
Mapping Language

 A W3C 
Recommendation, 
as of 2012

 Mapping 
documents 
contain sets of 
Triples Maps
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Triples Maps in R2RML (1)

 Reusable mapping definitions
 Specify a rule for translating each row of a 

logical table to zero or more RDF triples

 A logical table is a tabular SQL query result 
set that is to be mapped to RDF triples

 Execution of a triples map generates the 
triples that originate from the specific 
result set
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Triples Maps in R2RML (2)

 An example

13th Hellenic Data Management Symposium (HDMS'15)

map:persons
rr:logicalTable [ rr:tableName '"eperson"'; ];
rr:subjectMap [

rr:template 'http://data.example.org/repository/person/{"eperson_id"}';
rr:class foaf:Person; ];

rr:predicateObjectMap [
rr:predicate foaf:name;
rr:objectMap [ rr:template '{"firstname"} {"lastname"}' ;

rr:termType rr:Literal; ] ].
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An R2RML Mapping Example
@prefix map: <#>.

@prefix rr: <http://www.w3.org/ns/r2rml#>.

@prefix dcterms: <http://purl.org/dc/terms/>.

map:persons-groups

rr:logicalTable [ rr:tableName '"epersongroup2eperson"'; ];

rr:subjectMap [

rr:template 'http://data.example.org/repository/group/{"eperson_group_id"}';

];

rr:predicateObjectMap [

rr:predicate foaf:member;

rr:objectMap [ rr:template 'http://data.example.org/repository/person/{"eperson_id"}';

rr:termType rr:IRI; ] ].

<http://data.example.org/repository/group/1> foaf:member
<http://data.example.org/repository/person/1> ,
<http://data.example.org/repository/person/2> ,
<http://data.example.org/repository/person/3> , 
<http://data.example.org/repository/person/4> ,
<http://data.example.org/repository/person/5> ,
<http://data.example.org/repository/person/6> .
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The R2RML Parser tool

 An R2RML implementation
 Command-line tool that can export relational database contents as RDF 

graphs, based on an R2RML mapping document
 Open-source (CC BY-NC), written in Java

 Publicly available at https://github.com/nkons/r2rml-parser

 Worldwide interest (Ontotext, Abbvie, Financial Times)

 Tested against MySQL, PostgreSQL, and Oracle
 Output can be written in RDF/OWL

 N3, Turtle, N-Triple, TTL, RDF/XML(-ABBREV) notation, or Jena TDB backend

 Covers most (not all) of the R2RML constructs (see the wiki)
 Does not offer SPARQL-to-SQL translations 16

https://github.com/nkons/r2rml-parser
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Information Flow (1)

 Parse the source database contents into result sets

 According to the R2RML Mapping File, the Parser generates a set of 
instructions to the Generator

 The Generator instantiates in-memory the resulting RDF graph

 Persist the generated RDF graph into
 An RDF file in the Hard Disk, or

 In Jena’s relational database (eventually rendered obsolete), or

 In Jena’s TDB (Tuple Data Base, a custom implementation of B+ trees)

 Log the results

Parser GeneratorMapping 
fileSource database

RDF graph

TDB

R2RML Parser

Target database

Hard Disk
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Information Flow (2)

 Overall generation time is the sum of the following:
 t1: Parse mapping document

 t2: Generate Jena model in memory

 t3: Dump model to the destination medium

 t4: Log the results

 In incremental transformation, the log file contains the reified model

 A model that contains only reified statements

 Statements are annotated with the Triples Map URI that produced them
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Incremental RDF Triple Transformation

 Basic challenge
 Discover, since the last time the incremental RDF 

generation took place
 Which database tuples were modified

 Which Triples Maps were modified

 Then, perform the mapping only for this altered subset

 Ideally, we should detect the exact changed 
database cells and modify only the respectively 
generated elements in the RDF graph
 However, using R2RML, the atom of the mapping definition 

becomes the Triples Map
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Incremental transformation

 Possible when the resulting RDF graph is persisted on the hard disk

 The algorithm does not run the entire set of triples maps
 Consult the log file with the output of the last run of the algorithm

 MD5 hashes of triples maps definitions, SELECT queries, and respective query resultsets

 Perform transformations only on the changed data subset

 I.e. triples maps for which a change was detected

 The resulting RDF graph file is erased and rewritten on the hard disk

 Retrieve unchanged triples from the log file
 Log file contains a set of reified statements, annotated as per source Triples Maps 

definition
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Incremental storage

 Store changes without rewriting the whole graph

 Possible when the resulting graph is persisted in an RDF store
 Jena’s TDB in our case

 The output medium must allow additions/deletions/modifications at the triples level
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Proposed Approach

 For each Triples Map in the Mapping Document
 Decide whether we have to produce the resulting triples, based on the logged MD5 

hashes

 Dumping to the Hard Disk
 Initially, generate the number of RDF triples that correspond to the source 

database

 RDF triples are logged and annotated as reified statements

 Incremental generation

 In subsequent executions, modify the existing reified model, by reflecting only the 
changes in the source database

 Dumping to a database or to TDB
 No log is needed, storage is incremental by default
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Measurements Setup

 An Ubuntu server, 2GHz dual-core, 4GB RAM

 Oracle Java 1.7, Postgresql 9.1, Mysql 5.5.32

 7 DSpace (dspace.org) repositories
 1k, 5k, 10k, 50k, 100k, 500k, 1m items, respectively

 Random data text values (2-50 chars) populating a random number (5-30) of Dublin 
Core metadata fields

 A set of SQL queries: complicated, simplified, and simple
 In order to deal with database caching effects, the queries were run several times, 

prior to performing the measurements
2413th Hellenic Data Management Symposium (HDMS'15)



Query Sets

 Complicated
 3 expensive JOIN conditions 

among 4 tables

 4 WHERE clauses

 Simplified
 2 JOIN conditions among 3 tables

 2 WHERE clauses

 Simple
 No JOIN or WHERE conditions

SELECT i.item_id AS item_id, mv.text_value AS text_value
FROM item AS i, metadatavalue AS mv, 
metadataschemaregistry
AS msr, metadatafieldregistry AS mfr WHERE
msr.metadata_schema_id=mfr.metadata_schema_id AND
mfr.metadata_field_id=mv.metadata_field_id AND
mv.text_value is not null AND
i.item_id=mv.item_id AND
msr.namespace='http://dublincore.org/documents/dcmi-
terms/'
AND mfr.element='coverage'
AND mfr.qualifier='spatial'

SELECT i.item_id AS item_id, mv.text_value AS text_value
FROM item AS i, metadatavalue AS mv,
metadatafieldregistry AS mfr WHERE
mfr.metadata_field_id=mv.metadata_field_id AND
i.item_id=mv.item_id AND
mfr.element='coverage' AND
mfr.qualifier='spatial'

SELECT "language", "netid", "phone", 
"sub_frequency","last_active", "self_registered", 
"require_certificate", "can_log_in", "lastname", 
"firstname", "digest_algorithm", "salt", "password", 
"email", "eperson_id"
FROM "eperson" ORDER BY "language"

Q1: 28.32 *

Q2: 21.29 *

Q3: 12.52 *
* Score obtained using PostgreSQL’s EXPLAIN



Measurements Results

 Exporting to an RDF File

 Exporting to a Relational Database

 Exporting to Jena TDB
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Exporting to an RDF File (1)

 Export to an RDF file

 Simple and complicated queries, 
initial export

 Initial incremental dumps take more 
time than non-incremental, as the 
reified model also has to be created
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n non-incremental mapping 
transformation

a incremental, for the initial time

b 0/12 (no changes)
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Conclusions (1)

 The approach is efficient when data freshness is not crucial and/or 
selection queries over the contents are more frequent than the updates

 The task of exposing database contents as RDF could be considered similar 
to the task of maintaining search indexes next to text content

 Third party software systems can operate completely based on the 
exported graph
 E.g. using Fuseki, Sesame, Virtuoso

 TDB is the optimal solution regarding scalability

 Caution is still needed in producing de-referenceable URIs
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Conclusions (2)

 On the efficiency of the approach for storing RDF on the Hard Disk
 Good results for mappings (or queries) that include (or lead to) expensive SQL queries

 E.g. with numerous JOIN statements

 For changes that can affect as much as ¾ of the source data

 Limitations

 By physical memory

 Scales up to several millions of triples, does not qualify as “Big Data”

 Formatting of the logged model did affect performance

 RDF/XML and TTL try to pretty-print the result, consuming extra resources

 N-TRIPLES is optimal
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Future Work

 Hashing Result sets is expensive
 Requires re-run of the query, adds an “expensive” ORDER BY clause

 Further study the impact of SQL complexity on the performance

 Investigation of two-way updates
 Send changes from the triplestore back to the database
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Questions?
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