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Outline

 Part I: Theory of Kernel Methods

 Part II:  Applications to Rainfall Estimation
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Part I: 

Theory of Kernel 

Methods
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Outline of Part I

 Historical perspective

 Overview of kernel methods 

 Learning

 The basic idea of kernel methods

 Observations

 Parzen’s windows as a kernel method

 Support Vector Machines (SVMs)

 Kernels

 A classical example (XOR with polynomial kernel)

 Kernel methods with uncertain data

 Incremental kernel methods

 Minimax Probability Machine (MPM)

 Analytic Center Machines

 Other topics
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Historical Perspective

 Efficient algorithms for detecting linear relations were used in the 1950s 
and 1960s (perceptron algorithm).

 Handling nonlinear relationships was seen as major research goal at that 
time but the development of nonlinear algorithms with the same efficiency 
and stability has proven as an elusive goal.

 In the mid 80s the field of pattern analysis underwent a nonlinear 
revolution with backpropagation neural networks (NNs) and decision trees 
(based on heuristics and lacking a firm theoretical foundation, local minima 
problems, nonconvexity).

 In the mid 90s, kernel based methods have been developed while retaining 
the guarantees and understanding that have been developed for linear 
algorithms.



2014-12-17 6

Overview

 Kernel Methods are a new class of machine learning 
algorithms which can operate on very general types of data 
and can detect very general types of relations (e.g., Potential 
function method; Aizerman et al., 1964, Vapnik, 1982, 1995)

 Correlation, factor, cluster and discriminant analysis are some 
of the types of machine learning analysis tasks that can be 
performed on data as diverse as sequences, text, images, 
graphs and vectors using kernels

 Kernel methods provide also a natural way to merge and 
integrate different types of data
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Cont’d

 Kernel methods offer a modular framework

 In a first step, a dataset is processed into a kernel 

matrix. Data can be of various types and also of 

heterogeneous types

 In a second step, a variety of kernel algorithms can 

be used to analyze the data, using only the 

information contained in the kernel matrix
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Modular Framework

Source: J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern analysis, 2004
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Cont’d

 Computationally most kernel-based learning 
algorithms reduce to convex optimization 
problems

 Kernel design is based on various optimization 
methods. For discrete data (e.g., sequences) 
often use methods like dynamic programming, 
branch and bound, discrete continuous 
optimization, etc
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Cont’d

 The flexible combination of appropriate kernel 

design and relevant kernel algorithms has 

given rise to a powerful and coherent class of 

methods, whose computational and statistical 

properties are well understood (Schölkopf & 

Smola, 2002; Shawe-Taylor and Cristianini, 

2004)
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Cont’d

 Increasingly used in applications as diverse as 

biosequences and microarray data analysis, 

text mining, machine vision, handwriting 

recognition, weather prediction, metrology
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Learning from Data

 An essential procedure for pattern recognition

Data

Image

Signal

Kernel

Classifier
Classes
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Learning from Examples

Input Outputf

EXAMPLES

Input1 Output1

Input2 Output2

...........

Inputn Outputn
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Given a set of l examples (past data)

Question: find a function f such that

is a good predictor of y for a future input x

Cont’d



2014-12-17 15

Basic Idea of Kernel Methods

 Kernel Methods work by:

 Embedding data in a vector space called feature

space using a kernel function

 Looking for linear relations in such a space
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Idea of Kernel Methods

input space feature space










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Observations

 Much of the geometry of the data in the embedding 

space (relative positions) is contained in all pair-

wise inner products (information bottleneck)

 Inner product matrix (Kernel matrix)
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Cont’d

 We can work in feature space by specifying an 

inner product function K between points in it

 In many cases, inner product in the embedding 

space (feature space) is very cheap to compute
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Algorithms

 Algorithms that can be used with inner product 

information:

 Parzen’s Windows

 Support Vector Machines

 Ridge Regression

 Fisher Linear Discriminant Analysis (LDA)

 Principal Component Analysis (PCA)

 Clustering
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Parzen’s Windows as a Simple Kernel 

Algorithm

 

Source: Schölkopf  and Smola, Learning with Kernels, 2002
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Cont’d

 where m1 and m2 are the number of examples 

with positive and negative labels, respectively 

m1, m2 > 0
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Cont’d
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Remarks

 More sophisticated classification algorithms (e.g. 
SVMs) will be discussed that deviate in the selection 
of the data points on which the kernels are centered 
and the choice of weights that are placed on the 
individual kernels in the decision function.

 In SVMs the weights of the kernels will no longer be 
uniform as in Parzen’s windows where the weights 
are uniform depending on the class to which the 
pattern belongs.
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Support Vector 

Machines (SVMs)
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Separating Hyperplane and 

Optimal Hyperplane

Optimal Separating 
Hyperplane 

Separating Hyperplane
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Linear Two Class SVM  and 

Linear Separable Case

 Assume that we are given a set S of points xi 
Rn where each xi belongs to either of two classes

defined by yi  {1,-1}

 The objective is to find a hyperplane that divides

S leaving all the points of the same class on the

same side while maximizing the minimum

distance between either of the two classes and the

hyperplane [Vapnik 1995]
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Cont’d

 Definition 1. The set S is linearly separable if there

exists a w  Rn and b  R such that

In order to make each decision surface corresponding 
to one unique pair (w,b), the following constraint is 
imposed
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Cont’d

 The distance from a 

point x to the hyperplane 

associated to the pair 

(w,b) is

 The distance between 
canonical hyperplane and 
the closest point is 
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Maximum Margin Separation
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Primal Optimization Problem
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Lagrangian Saddle Point and 

Optimal Point

 The Lagrangian is

 Optimality conditions

 Optimal Point

 Support vector:  a training vector for which
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KKT Conditions
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Dual Optimization Problem
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SVMs (nonseparable)

i

i

i
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Linearly Non-separable Case

(Soft Margin Optimal Hyperplane)
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Lagrangian and Optimality 

Conditions
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Dual Problem
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Nonlinear Case

 If the data are nonlinear separable, we map the 
input variable x into a higher dimensional feature 
space

 If we map the input space to the feature space, 
then we will obtain a hyperplane that separates 
the data into two groups in the feature space
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Cont’d

 Kernel function
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Dual problem in nonlinear case

 Replace the dot product of the inputs with 

the kernel function in the nonseparable case
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and can be “written” as 

the SVM network

Equivalence to Networks

K K

+

f

K
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Kernel Functions in SVMs

 An inner product in feature space has an equivalent

kernel in input space

 Any symmetric positive semi-definite function

(Smola, 1998), which satisfies the Mercer's

Conditions can be used as kernel function in the

SVM context. Mercer's Conditions can be written

as
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Some Kernel Functions

 Polynomial Type:

 Gaussian Radial Basis Function (GRBF):

 Exponential Radial Basis Function:

 Multi-Layer Perceptron:

 Fourier Series:
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Contour Plots of A Kernel Matrix
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What we have achieved?

 Replaced problem of NN architecture by kernel 
definition

 More natural

 Can be applied to non-vectorial data

 Gained more flexible generalization control

 No local minima (convex optimization)
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Separating Hyperplanes 

( Source: Hastie et al., 2004)

 Mixture_linear

 Mixture_medium

 Mixture_rough

 Mixture_smooth

 Small_balanced_overlap

 Small_overlap

 Small_separated

 Small_unbalanced

mixture_linear.mpeg
../ANNIE05/annie05_plenary/mixture_medium.mpeg
../ANNIE05/annie05_plenary/mixture_rough.mpeg
../ANNIE05/annie05_plenary/mixture_smooth.mpeg
../ANNIE05/annie05_plenary/small_balanced_overlap.mpeg
../ANNIE05/annie05_plenary/small_overlap.mpeg
../ANNIE05/annie05_plenary/small_separated.mpeg
../ANNIE05/annie05_plenary/small_ubalanced.mpeg
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XOR Problem 

(Nonlinear Separable Case)
x1 x2 y

1 1 1

1 -1 -1

-1 1 -1

-1 -1 1

We map the input variable x into a higher dimensional feature space
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Cont’d
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Classifier in Input Space

(1,0)

(0,1)

(-1,0)

(0,-1)
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Classifier in Feature Space
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Robust Support Vector Machines 

with Data Uncertainty

 Permit noise of data     

 SVM solutions are robust for perturbation of data
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Cont’d
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Incremental SVMs

Whole data set

SVM

SVs SVs SVs

Decision function

Batch 1 Batch 2 Batch 3 Batch 4 Batch N………..
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MPM: Problem Description

aT z = b : decision 

hyperplaneGiven data samples from two different 

classes. Find                      such that if             

then z is identified with the random variable 

x, an if                then z is identified with the 

random variable y

Notation:

Let             and              denote random 

vector with 

• will denote the set of  

distributions which has the mean    

and covariance 

source: Lanckriet et al, 2002
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MPM

 MPM approach was introduced by Lanckriet et al. 

(2002) 

 Minimizing the maximum probability of 

misclassification of the future data points 
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Analytic Center Machines

wSVM

y1(x1)

wACM

y4(x4)

y3(x3)

y2(x2)
wSVM

y1(x1)

wACM

y4(x4)

y3(x3)

y2(x2)

Source: Trafalis and Malyscheff, An Analytic Center Machine, Machine Learning, 2002
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Cont’d
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Other Topics

 Bayesian Kernel Methods

 Kernel Feature Extraction

 Kernel Principal Component Analysis (KPCA)

 Kernels for structured data (text, strings, trees, 

etc.)

 Optimization methods with large scale data 

mining problems
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Part II : 

Weather Applications
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How do we begin?

 Data! 

 Radar data provide the 
best observational tool 
for gathering weather 
information

 Weather Surveillance 
Radar – 1988 Doppler 
(WSR-88D)

NWS, Sterling VA
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Radar Horizon

 Phenomena of similar sizes are not necessarily 

resolvable at near and far ranges.
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Radar continued

 Information we get from radar data

 Reflectivity (Z):  ratio of the radiant energy reflected 

by a given surface to the total incident energy

 Velocity (V):  velocity of target

 Spectrum Width (W):  measure of dispersion of 

velocities within the radar sample   
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Prediction of Rainfall

From WSR-88D Radar Using 

Support Vector Regression (SVR) 

and Least Squares SVR 
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Introduction

 Flash floods kill more people than any other weather phenomenon

 Our ability to estimate precipitation and flooding from current state of
the science technology is frequently inaccurate and can be improved.
Existing techniques, known as Z-R relations, used to estimate rainfall
rates are based on empirical fits to radar reflectivity. These are known
to be inaccurate in very light and very heavy rain situations

 By using SVR and LS-SVR we want to utilize the native variables from
the WSR-88D, namely reflectivity (Z) to predict rainfall. It may be
possible to incorporate additional information into the forecasts

 SVR is being used as it has a property to generalize well with lower 
error as compared to traditional regression techniques
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Objectives

 Utilize Support Vector Regression (SVR) and Least 
Squares SVR, to predict rainfall in Chandler, OK 
based on WSR-88D 

 Compare the forecasts of rainfall given by SVR and 
LS-SVR to that of traditional regression 

 Compare SVR to existing Z-R relation
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 The most common form of the rainfall rate (RR) and
reflectivity (Z) is the empirical relationship:

RR=(0.036)(10)(0.0625)(Z)

 WSR-88D records digital database containing 3
variables: velocity (V), reflectivity (Z), and spectrum
width (W)

 The primary focus of the research is to capitalize on
Z.

Problem Statement



180 km

Chandler54 km

Radar is located in Norman, 

Oklahoma and the rainfall is 

measured in Chandler, Oklahoma 

using an automated Mesonet site 

that measures rainfall every 5 

minutes.  The radar data stream 

comes in every 5 to 6 minutes, 

allowing good calibration for these 

data.
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Details on Radar Data Used

The empirical formula (Z-R) uses reflectivity from the 

lowest scan (elevation) angle.  The SVM approach uses a 

multi-level approach with 5 elevation angles to better 

sample the vertical storm environment.  Additionally, the 

SVM approach uses a 5 x 5 set of azimuth bins from 

adjacent areas above Chandler to better sample the 

horizontal storm environment.



54 km

North

Azimuth angle

Chandler
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 5x5 grid of points centered on rain gauge 

for each elevation angle

Retrieving Data

1 km

= rain gauge

(25 boxes) x (5 levels) = 125 input components for each data point
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Input

Reflectivity(Z)

Spectrum Width (W)

Output

Rainfall

Regression

SVR

LS-SVR

PCA application

Methodology
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Formulation of SVR

 Min

Subject to

 Min

 ε- insensitive loss function
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Dual SV Regression Problem

 Using Lagrangian duality we obtain the following 

quadratic SV regression problem

 At the optimal solution, we obtain
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Least Square-Support Vector 

Regression (Suykens)

Subject to

 Lagrange formulation 

 Primal formulation 
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Cont’d

where y = [y1,…,y], 1v = [11,…,1],  = [1,…, ] and 

for i, j =1,…, .

 KKT Optimality Conditions 
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Results

Method Predictors
Training Average 

MSE

Testing  Average 

MSE

Traditional 

Regression
PC Z 0.3494 0.4665

ANNs PC Z 0.1957 0.3383

SVR PC Z 0.1507 0.3099

LS-SVR PC Z 0.1754 0.2709

Formula Z 0.2887 0.3728

MSE of training and testing for traditional regression,  SVR, 

LS-SVR, Formula  (mm2)
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Conclusions

 For rainfall estimation, the LS-SVR 
outperforms the ANN by over 50% in the R2

statistic and over 27% in MSE reduction

 LS-SVR R2 is 50.6% higher than for the 
rainfall rate (RR) formula  

 For rainfall detection, the SVR method has
11.9% more skill than LS-SVR and 24.8%
more skill than the RR Formula.
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