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 Part I: Theory of Kernel Methods

 Part II:  Applications to Rainfall Estimation
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Part I: 

Theory of Kernel 

Methods
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Outline of Part I

 Historical perspective

 Overview of kernel methods 

 Learning

 The basic idea of kernel methods

 Observations

 Parzen’s windows as a kernel method

 Support Vector Machines (SVMs)

 Kernels

 A classical example (XOR with polynomial kernel)

 Kernel methods with uncertain data

 Incremental kernel methods

 Minimax Probability Machine (MPM)

 Analytic Center Machines

 Other topics
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Historical Perspective

 Efficient algorithms for detecting linear relations were used in the 1950s 
and 1960s (perceptron algorithm).

 Handling nonlinear relationships was seen as major research goal at that 
time but the development of nonlinear algorithms with the same efficiency 
and stability has proven as an elusive goal.

 In the mid 80s the field of pattern analysis underwent a nonlinear 
revolution with backpropagation neural networks (NNs) and decision trees 
(based on heuristics and lacking a firm theoretical foundation, local minima 
problems, nonconvexity).

 In the mid 90s, kernel based methods have been developed while retaining 
the guarantees and understanding that have been developed for linear 
algorithms.
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Overview

 Kernel Methods are a new class of machine learning 
algorithms which can operate on very general types of data 
and can detect very general types of relations (e.g., Potential 
function method; Aizerman et al., 1964, Vapnik, 1982, 1995)

 Correlation, factor, cluster and discriminant analysis are some 
of the types of machine learning analysis tasks that can be 
performed on data as diverse as sequences, text, images, 
graphs and vectors using kernels

 Kernel methods provide also a natural way to merge and 
integrate different types of data
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Cont’d

 Kernel methods offer a modular framework

 In a first step, a dataset is processed into a kernel 

matrix. Data can be of various types and also of 

heterogeneous types

 In a second step, a variety of kernel algorithms can 

be used to analyze the data, using only the 

information contained in the kernel matrix
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Modular Framework

Source: J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern analysis, 2004
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Cont’d

 Computationally most kernel-based learning 
algorithms reduce to convex optimization 
problems

 Kernel design is based on various optimization 
methods. For discrete data (e.g., sequences) 
often use methods like dynamic programming, 
branch and bound, discrete continuous 
optimization, etc
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Cont’d

 The flexible combination of appropriate kernel 

design and relevant kernel algorithms has 

given rise to a powerful and coherent class of 

methods, whose computational and statistical 

properties are well understood (Schölkopf & 

Smola, 2002; Shawe-Taylor and Cristianini, 

2004)
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Cont’d

 Increasingly used in applications as diverse as 

biosequences and microarray data analysis, 

text mining, machine vision, handwriting 

recognition, weather prediction, metrology
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Learning from Data

 An essential procedure for pattern recognition

Data

Image

Signal

Kernel

Classifier
Classes
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Learning from Examples

Input Outputf

EXAMPLES

Input1 Output1

Input2 Output2

...........

Inputn Outputn
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Given a set of l examples (past data)

Question: find a function f such that

is a good predictor of y for a future input x

Cont’d
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Basic Idea of Kernel Methods

 Kernel Methods work by:

 Embedding data in a vector space called feature

space using a kernel function

 Looking for linear relations in such a space



2014-12-17 16

Idea of Kernel Methods

input space feature space
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Observations

 Much of the geometry of the data in the embedding 

space (relative positions) is contained in all pair-

wise inner products (information bottleneck)

 Inner product matrix (Kernel matrix)
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Cont’d

 We can work in feature space by specifying an 

inner product function K between points in it

 In many cases, inner product in the embedding 

space (feature space) is very cheap to compute
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Algorithms

 Algorithms that can be used with inner product 

information:

 Parzen’s Windows

 Support Vector Machines

 Ridge Regression

 Fisher Linear Discriminant Analysis (LDA)

 Principal Component Analysis (PCA)

 Clustering



2014-12-17 20

Parzen’s Windows as a Simple Kernel 

Algorithm

 

Source: Schölkopf  and Smola, Learning with Kernels, 2002
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Cont’d

 where m1 and m2 are the number of examples 

with positive and negative labels, respectively 

m1, m2 > 0
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Cont’d
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Remarks

 More sophisticated classification algorithms (e.g. 
SVMs) will be discussed that deviate in the selection 
of the data points on which the kernels are centered 
and the choice of weights that are placed on the 
individual kernels in the decision function.

 In SVMs the weights of the kernels will no longer be 
uniform as in Parzen’s windows where the weights 
are uniform depending on the class to which the 
pattern belongs.
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Support Vector 

Machines (SVMs)
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Separating Hyperplane and 

Optimal Hyperplane

Optimal Separating 
Hyperplane 

Separating Hyperplane
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Linear Two Class SVM  and 

Linear Separable Case

 Assume that we are given a set S of points xi 
Rn where each xi belongs to either of two classes

defined by yi  {1,-1}

 The objective is to find a hyperplane that divides

S leaving all the points of the same class on the

same side while maximizing the minimum

distance between either of the two classes and the

hyperplane [Vapnik 1995]
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Cont’d

 Definition 1. The set S is linearly separable if there

exists a w  Rn and b  R such that

In order to make each decision surface corresponding 
to one unique pair (w,b), the following constraint is 
imposed
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Cont’d

 The distance from a 

point x to the hyperplane 

associated to the pair 

(w,b) is

 The distance between 
canonical hyperplane and 
the closest point is 
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Maximum Margin Separation
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Primal Optimization Problem
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Lagrangian Saddle Point and 

Optimal Point

 The Lagrangian is

 Optimality conditions

 Optimal Point

 Support vector:  a training vector for which
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KKT Conditions
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Dual Optimization Problem
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SVMs (nonseparable)

i

i

i
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Linearly Non-separable Case

(Soft Margin Optimal Hyperplane)
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Lagrangian and Optimality 

Conditions
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Dual Problem



2014-12-17 38

Nonlinear Case

 If the data are nonlinear separable, we map the 
input variable x into a higher dimensional feature 
space

 If we map the input space to the feature space, 
then we will obtain a hyperplane that separates 
the data into two groups in the feature space
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Cont’d

 Kernel function
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Dual problem in nonlinear case

 Replace the dot product of the inputs with 

the kernel function in the nonseparable case
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and can be “written” as 

the SVM network

Equivalence to Networks

K K

+

f

K
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Kernel Functions in SVMs

 An inner product in feature space has an equivalent

kernel in input space

 Any symmetric positive semi-definite function

(Smola, 1998), which satisfies the Mercer's

Conditions can be used as kernel function in the

SVM context. Mercer's Conditions can be written

as
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Some Kernel Functions

 Polynomial Type:

 Gaussian Radial Basis Function (GRBF):

 Exponential Radial Basis Function:

 Multi-Layer Perceptron:

 Fourier Series:
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Contour Plots of A Kernel Matrix
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What we have achieved?

 Replaced problem of NN architecture by kernel 
definition

 More natural

 Can be applied to non-vectorial data

 Gained more flexible generalization control

 No local minima (convex optimization)
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Separating Hyperplanes 

( Source: Hastie et al., 2004)

 Mixture_linear

 Mixture_medium

 Mixture_rough

 Mixture_smooth

 Small_balanced_overlap

 Small_overlap

 Small_separated

 Small_unbalanced

mixture_linear.mpeg
../ANNIE05/annie05_plenary/mixture_medium.mpeg
../ANNIE05/annie05_plenary/mixture_rough.mpeg
../ANNIE05/annie05_plenary/mixture_smooth.mpeg
../ANNIE05/annie05_plenary/small_balanced_overlap.mpeg
../ANNIE05/annie05_plenary/small_overlap.mpeg
../ANNIE05/annie05_plenary/small_separated.mpeg
../ANNIE05/annie05_plenary/small_ubalanced.mpeg
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XOR Problem 

(Nonlinear Separable Case)
x1 x2 y

1 1 1

1 -1 -1

-1 1 -1

-1 -1 1

We map the input variable x into a higher dimensional feature space
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Cont’d
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Classifier in Input Space

(1,0)

(0,1)

(-1,0)

(0,-1)
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Classifier in Feature Space
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Robust Support Vector Machines 

with Data Uncertainty

 Permit noise of data     

 SVM solutions are robust for perturbation of data



2014-12-17 52

Cont’d



2014-12-17 53

Incremental SVMs

Whole data set

SVM

SVs SVs SVs

Decision function

Batch 1 Batch 2 Batch 3 Batch 4 Batch N………..
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MPM: Problem Description

aT z = b : decision 

hyperplaneGiven data samples from two different 

classes. Find                      such that if             

then z is identified with the random variable 

x, an if                then z is identified with the 

random variable y

Notation:

Let             and              denote random 

vector with 

• will denote the set of  

distributions which has the mean    

and covariance 

source: Lanckriet et al, 2002
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MPM

 MPM approach was introduced by Lanckriet et al. 

(2002) 

 Minimizing the maximum probability of 

misclassification of the future data points 
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Analytic Center Machines

wSVM

y1(x1)

wACM

y4(x4)

y3(x3)

y2(x2)
wSVM

y1(x1)

wACM

y4(x4)

y3(x3)

y2(x2)

Source: Trafalis and Malyscheff, An Analytic Center Machine, Machine Learning, 2002
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Cont’d



2014-12-17 58

Other Topics

 Bayesian Kernel Methods

 Kernel Feature Extraction

 Kernel Principal Component Analysis (KPCA)

 Kernels for structured data (text, strings, trees, 

etc.)

 Optimization methods with large scale data 

mining problems
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Part II : 

Weather Applications
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How do we begin?

 Data! 

 Radar data provide the 
best observational tool 
for gathering weather 
information

 Weather Surveillance 
Radar – 1988 Doppler 
(WSR-88D)

NWS, Sterling VA
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Radar Horizon

 Phenomena of similar sizes are not necessarily 

resolvable at near and far ranges.
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Radar continued

 Information we get from radar data

 Reflectivity (Z):  ratio of the radiant energy reflected 

by a given surface to the total incident energy

 Velocity (V):  velocity of target

 Spectrum Width (W):  measure of dispersion of 

velocities within the radar sample   
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Prediction of Rainfall

From WSR-88D Radar Using 

Support Vector Regression (SVR) 

and Least Squares SVR 
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Introduction

 Flash floods kill more people than any other weather phenomenon

 Our ability to estimate precipitation and flooding from current state of
the science technology is frequently inaccurate and can be improved.
Existing techniques, known as Z-R relations, used to estimate rainfall
rates are based on empirical fits to radar reflectivity. These are known
to be inaccurate in very light and very heavy rain situations

 By using SVR and LS-SVR we want to utilize the native variables from
the WSR-88D, namely reflectivity (Z) to predict rainfall. It may be
possible to incorporate additional information into the forecasts

 SVR is being used as it has a property to generalize well with lower 
error as compared to traditional regression techniques
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Objectives

 Utilize Support Vector Regression (SVR) and Least 
Squares SVR, to predict rainfall in Chandler, OK 
based on WSR-88D 

 Compare the forecasts of rainfall given by SVR and 
LS-SVR to that of traditional regression 

 Compare SVR to existing Z-R relation
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 The most common form of the rainfall rate (RR) and
reflectivity (Z) is the empirical relationship:

RR=(0.036)(10)(0.0625)(Z)

 WSR-88D records digital database containing 3
variables: velocity (V), reflectivity (Z), and spectrum
width (W)

 The primary focus of the research is to capitalize on
Z.

Problem Statement



180 km

Chandler54 km

Radar is located in Norman, 

Oklahoma and the rainfall is 

measured in Chandler, Oklahoma 

using an automated Mesonet site 

that measures rainfall every 5 

minutes.  The radar data stream 

comes in every 5 to 6 minutes, 

allowing good calibration for these 

data.
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Details on Radar Data Used

The empirical formula (Z-R) uses reflectivity from the 

lowest scan (elevation) angle.  The SVM approach uses a 

multi-level approach with 5 elevation angles to better 

sample the vertical storm environment.  Additionally, the 

SVM approach uses a 5 x 5 set of azimuth bins from 

adjacent areas above Chandler to better sample the 

horizontal storm environment.



54 km

North

Azimuth angle

Chandler



2014-12-17 71

 5x5 grid of points centered on rain gauge 

for each elevation angle

Retrieving Data

1 km

= rain gauge

(25 boxes) x (5 levels) = 125 input components for each data point
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Input

Reflectivity(Z)

Spectrum Width (W)

Output

Rainfall

Regression

SVR

LS-SVR

PCA application

Methodology
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Formulation of SVR

 Min

Subject to

 Min

 ε- insensitive loss function
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Dual SV Regression Problem

 Using Lagrangian duality we obtain the following 

quadratic SV regression problem

 At the optimal solution, we obtain
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Least Square-Support Vector 

Regression (Suykens)

Subject to

 Lagrange formulation 

 Primal formulation 
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Cont’d

where y = [y1,…,y], 1v = [11,…,1],  = [1,…, ] and 

for i, j =1,…, .

 KKT Optimality Conditions 
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Results

Method Predictors
Training Average 

MSE

Testing  Average 

MSE

Traditional 

Regression
PC Z 0.3494 0.4665

ANNs PC Z 0.1957 0.3383

SVR PC Z 0.1507 0.3099

LS-SVR PC Z 0.1754 0.2709

Formula Z 0.2887 0.3728

MSE of training and testing for traditional regression,  SVR, 

LS-SVR, Formula  (mm2)
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Conclusions

 For rainfall estimation, the LS-SVR 
outperforms the ANN by over 50% in the R2

statistic and over 27% in MSE reduction

 LS-SVR R2 is 50.6% higher than for the 
rainfall rate (RR) formula  

 For rainfall detection, the SVR method has
11.9% more skill than LS-SVR and 24.8%
more skill than the RR Formula.
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