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ABSTRACT 

In addition to tools offering RDF views over databases, a variety 

of tools exist that allow exporting database contents into RDF 

graphs; tools proven that in many cases demonstrate better 

performance than the former. However, in cases when database 

contents are exported into RDF, it is not always optimal or even 

necessary to dump the whole database contents every time. In this 

paper, the problem of incremental generation and storage of the 

resulting RDF graph is investigated. An implementation of the 

R2RML standard is used in order to express mappings that 

associate tuples from the source database to triples in the resulting 

RDF graph. Next, a methodology is proposed that enables 

incremental generation and storage of an RDF graph based on a 

source relational database, and it is evaluated through a set of 

performance measurements. Finally, a discussion is presented 

regarding the authors’ most important findings and conclusions.   

Categories and Subject Descriptors 

E.2 [Data Storage Representations]: Linked representations, 

H.2.4 [Systems] Relational databases 

General Terms 

Algorithms, Measurement, Performance, Experimentation. 

Keywords 

Linked Open Data, Incremental, RDF, Relational Databases, 

Mapping, R2RML. 

1. INTRODUCTION 
Systems that collect, maintain and update information are not 

always using triplestores at their backend. Data that result in 

triples are typically exported from other, primary sources into 

RDF graphs, often relying on systems that have a Relational 

Database Management System (RDBMS) at their core, and 

maintained by teams of professionals that trust it for mission-

critical tasks. 

Moreover, it is understood that experimenting with new 

technologies – as the Linked Open Data (LOD) world can be 

perceived by people and industries working on less frequently 

changing environments – can be a task that requires caution, since 

it is often difficult to change established methodologies and 

systems, let alone replace by newer ones. Consider, for instance, 

the library domain, where a whole living and breathing 

information ecosystem is buzzing around bibliographic records, 

authorities records, digital object records, e-books, digital articles 

etc., where maintenance and update tasks are unremitting. In these 

situations, changes in the way data are produced, assured for their 

quality and updated affects people’s everyday working activities 

and therefore, operating newer technologies side-by-side for a 

period of time before migrating to new technologies seems the 

only applicable – and sensible – approach. 

Therefore, in many cases, the only viable solution is to 

maintain triplestores as an alternative delivery channel, in addition 

to production systems, a task that becomes increasingly 

multifarious and performance-demanding, especially when the 

primary information is rapidly changing. This way the operation 

of information systems remains intact, while at the same time they 

expose seamlessly their data as LOD. 

To this direction, several mapping techniques between 

relational databases and RDF graphs have been introduced in the 

bibliography, among which various tools, languages, and 

methodologies. Thus, in order to expose relational database 

contents as LOD, several policy choices have to be made, since 

several alternative approaches exist in the literature, without any 

one-size-fits-all approach [1]. 

When exporting database contents as RDF, one of the most 

important factors to be considered is discussed in [2]: Should 

RDF content generation take place in real-time or should database 

contents be dumped into RDF asynchronously? In other words, 

the question to be answered is whether the RDF view over the 

relational database contents should be transient or persistent. Both 

approaches constitute acceptable, viable approaches, each with its 

own characteristics, its benefits and its drawbacks. 

As argued in [2], in contexts where data update is not 

frequent, as is the case in digital repositories, real-time SPARQL-

to-SQL conversions are not the optimal approach, despite the 

presence of database performance improvement techniques (e.g. 

indexes) that would presumably increase performance compared 

to plain RDF graphs. When querying, the round-trips to the 

database pose an additional burden, while RDF dumps perform 

much faster. The performance difference is even more visible, 
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especially in cases when SPARQL queries involve many triple 

patterns, which, subsequently translated to SQL queries, include 

numerous “expensive” JOIN statements. Additionally, it must be 

noted that asynchronous RDF dumps of the database, leave 

current established practices untouched, by doing the additional 

work in extra steps, without replacing existing steps in the 

information processing workflow. 

The performance optimization problem defined and analyzed 

in this paper focuses on providing a persistent RDF view over 

relational database contents and, more specifically, the 

minimization of the triplestore downtime each time the RDF 

export is materialized, which corresponds to the time that is 

required until the triplestore contents are replaced/updated by the 

new ones, reflecting the changes in the database. In order to do so, 

an incremental approach is introduced for the generation and 

storage of the RDF graph, as opposed to fully replacing the graph 

contents with the latest version each time the RDF dump is 

materialized. The problem can be further distinguished into two 

sub-problems: 

 Sub-problem #1: Incremental transformation. This states that 

each time the transformation is executed, not all of the initial 

information that lies in the database should be transformed 

into RDF, but only the one that changed. 

 Sub-problem #2: Incremental storage. This is a problem that 

is investigated only when the resulting RDF graph is stored 

in a relational database or a Jena TDB (to be briefly analyzed 

in Section 3) model. The problem here, regardless to whether 

the transformation took place fully or incrementally is about 

storing (persisting) to the destination RDF graph only the 

triples that were modified and not the whole graph. 

RDF views on relational database contents can be 

materialized either synchronously (i.e. in real-time), or 

asynchronously (ad hoc, as it is often mentioned). We note that, 

according to [3], the notion of real-time is tightly coupled with the 

concepts of event and response time. An event can be defined as 

“any occurrence that results in a change in the sequential flow of 

program execution” and the response time as “the time between 

the presentation of a set of inputs and the appearance of all the 

associated outputs”. Contrarily, in the ad hoc, asynchronous 

approach, the user can run the execution command that will dump 

the relational database contents into an RDF graph at will. 

Given the definitions above, the incremental approach can be 

characterized as ad hoc, and not real-time since transformations 

are performed asynchronously. Emphasis is given in studying 

processing times that each transformation steps requires towards 

the RDF graph generation, taking into account parameters such as 

the output medium, whether the change is incremental or not, the 

total size of the resulting graph, and the percentage of the triples 

of the initial graph that were changed. 

The paper is structured as follows: Section 2 provides an 

overview of the related works in the literature, Section 3 

introduces and analyzes the proposed approach, Section 4 

describes the measurement environment and parameters, presents 

the performance measurements and a discussion over the results 

while Section 5 concludes the paper with our most important 

observations and future plans to expand on this work. 

2. RELATED WORK 
Numerous approaches have been proposed in the 

bibliography, mainly concerning the creation and maintenance of 

mappings between RDF and databases. Mapping relational 

databases to RDF or graph databases is a domain where much 

work has been conducted and several approaches have been 

proposed [4, 5, 6, 7]. Typically, the goal is to describe the 

relational database contents using an RDF graph (or an ontology) 

in a way that allows queries submitted to the RDF schema to be 

answered with data stored in the relational database. Also, for 

transporting data residing in Relational Databases into the 

Semantic Web, many automated or semi-automated mechanisms 

for ontology schemes instantiation have been created [8,9,10, 11]. 

Related software tools can be broadly divided into two major 

categories: the ones that allow real-time translation from relational 

database contents into RDF (transient RDF views) and the ones 

that allow exports (persistent RDF views). 

Many approaches exist where transient RDF views are 

offered on top of relational databases, putting effort into 

conceiving efficient algorithms that translate SPARQL queries 

over the RDF graph in semantically equivalent SQL ones that are 

executed over the underlying relational database instance [12, 13]. 

Evaluation results, such as the ones presented in [14], show that 

under certain conditions, some SPARQL-to-SQL rewriting 

engines (e.g. D2RQ, a solution introduced in [15] or Virtuoso 

RDF Views [16, 17]) perform faster than native triple stores in 

query answering, achieving lower query response times. In cases 

when this happens, it is mostly attributed to two reasons: The first 

one is the maturity and optimization strategies existing in 

relational database systems that outperform triple stores, while the 

second one is more fundamental and lies in the combination of the 

RDF data model and the structure of the (relatively homogenous) 

benchmark dataset that was used for providing the results [14].  

Query-driven approaches provide access to an RDF graph 

that is implied and does not exist in physical form (transient 

approach). In this case, the RDF graph is virtual (i.e. partially 

instantiated) and is only considered when some appropriate 

request is made, usually in the shape of a semantic query. Tools of 

this category include Virtuoso [16] and D2RQ. In this category of 

approaches, queries using SPARQL are consequently translated 

into SQL queries. These systems include D2RQ [13] and the 

Virtuoso universal server [16], both of which are approaches that 

support RDF Views over relational database contents making it 

possible to publish a transient RDF graphs on top of relational 

databases.  

Asynchronous, ad hoc dumps, performed by a category of 

tools that can generate an RDF dump based on a relational 

database can be classified according to a number of criteria to a 

number of categories [19]. Batch-transformation, or Extract-

Transform-Load (ETL) approaches generate a new RDF graph 

from a relational database instance (e.g. [20, 21]) and store 

physically in an external storage medium, such as a triplestore. 

This approach is called materialized, or persistent [2]. This 

approach does not provide or maintain any means of mappings 

between the source contents and the output (as in [11]), but 

requires a mapping file, with the use of which, it is made possible 

to obtain a snapshot of the relational database contents and export 

it as an RDF graph. The option of dumping relational database 

contents into RDF is also supported by D2RQ (alongside its main 

function as an RDF server), Triplify [21], and also the Virtuoso 

universal server. 

The authors’ previous work, introduced in [20], comprises an 

approach that, in contexts where the data are not updated 

frequently, performs much faster in RDF-izing relational database 

contents, compared to translating SPARQL queries to SQL in 

real-time [2]. This approach was used in this paper and was 
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Figure 1: Overall architectural overview of the approach.

further modified and enhanced, in order to support incremental 

RDF dumps for our evaluation through experimentation. 

Less work has been conducted as far as it concerns 

incremental RDF generation techniques. In [22], an approach is 

introduced for the incremental, rule-based generation of RDF 

views over relational data. The paper presents an incremental 

maintenance strategy, based on rules, for RDF views defined on 

top of relational data. A comparison with our system could not 

currently be made as the work presented in [22] is not currently 

followed by an implementation that could be evaluated/compared 

to ours, it is mentioned however in the authors’ future plans. 

Finally, in [23] the AWETO RDF storage system is introduced, 

where both querying and incremental updates are supported, 

following a hash-based approach in order to perform incremental 

updates, an approach that targets RDF storage and not 

transformation as in the hereby presented work. 

3. PROPOSED APPROACH 
The basic information flow in the proposed approach has the 

relational database as a starting point and an RDF graph as the 

result. The basic components are: the source relational database, 

the R2RML Parser tool1 , and the resulting RDF graph. Figure 1 

illustrates how this flow in information processing takes place. 

First, database contents are parsed into result sets. Then, 

according to the mapping file, defined in R2RML [24], the Parser 

component generates a set of instructions (i.e. a Java object) for 

the Generator component. Subsequently, the Generator 

component, based on this set of instructions, instantiates in-

memory the resulting RDF graph. Next, the generated RDF graph 

is persisted, which can be an RDF file on the hard disk, another 

relational database, tailored to serve RDF data, or TDB, Jena’s 

[25] custom implementation of threaded B+Trees2. 

While the first two need no further comments, it is 

interesting to describe TDB briefly. The TDB (Tuple Data Base) 

engine works in tuples, of which triples are a case. Technically, a 

dataset backed by TDB is stored in a single directory in the file 

system. A dataset comprises of the node table, triple and quad 

indexes, and a table with the prefixes. Jena’s implementation of 

B+Trees only provides for fixed length key and fixed length 

value, and there is no use of the value part in triple indexes. 

Because of the custom implementation, it performs faster than the 

relational database backend, allowing the implementation to scale 

much more, as it is demonstrated in the performance 

measurements in Section 5.   

In order to produce RDF content incrementally, we can 

distinguish the following two cases: 

 Incremental transformation: This is possible when the 

resulting RDF graph is persisted on the hard disk. In this 

                                                                 

1 The R2RML Parser tool: 

http://www.w3.org/2001/sw/wiki/R2RML_Parser 

2 TDB Architecture: 

http://jena.apache.org/documentation/tdb/architecture.html 

approach, the algorithm that produces the resulting graph 

does not run over the whole mapping document declarations. 

This is realized by consulting the log file with the output of a 

previous run of the algorithm, and performing 

transformations only on the changed data subset. In this case, 

the resulting RDF graph file is erased and rewritten on the 

hard disk. 

 Incremental storage: This is an approach that is only possible 

in cases when the resulting graph is persisted in a relational 

database or using Jena’s TDB implementation. Only when 

the output medium allows additions/deletions/modifications 

at the level of triples, it is made possible to store the changes 

without rewriting the whole graph. 

In the course of the experiments, time in each execution is 

divided in the following consecutive time parts. The time 

measured in the experiments is the sum of t1, t2, and t3: 

 t1: The mapping document is parsed 

 t2: The Jena model is generated in-memory. This is 

considered to be a discrete step since, at least in theory, upon 

termination of this step, the model is available to APIs that 

could as well belong to third party applications. 

 t3: The model is dumped to the destination medium. 

 t4: The results are logged. In the incremental RDF generation 

case, the log file includes writing the “reified model” 

 t5: The program is terminated 

In the scope of the hereby presented work, the term reified 

model is introduced, in analogy to the term reified statement. 

Reification in RDF is the ability to treat an RDF statement as an 

RDF resource, and hence to make assertions about that statement.  

The term reified model denotes a model whose statements are all 

reified, i.e. a model that contains only reified statements. This was 

made in order to store information about every triple regarding the 

mapping definition that produced it. 

In Figure 2, a materialized example is shown of how 

standard RDF triples are logged as reified statements, followed by 

a provenance note. The reified statement in the example is 

annotated with the mapping declaration that led to its generation, 

i.e. the triples map definition map:persons. 

The term triples map is also a key term to this work: A 

triples map specifies a rule for translating each row of a logical 

table to zero or more RDF triples3. A logical table is a tabular 

SQL query result that is to be mapped to RDF triples. Hence, 

execution of a triples map generates the triples that originate from 

a specific dataset, i.e. a logical table. Figure 3 illustrates an 

example of a triples map that is assigned the qname 

map:persons. 

                                                                 

3 Definition of a Triples Map: http://www.w3.org/TR/r2rml/#dfn-

triples-map 



<http://data.example.org/repository/person/1> 

foaf:name "John Smith" . 

becomes 

[] a rdf:Statement ; 

     rdf:subject 

<http://data.example.org/repository/person/1> ; 

   rdf:predicate foaf:name ; 

   rdf:object "John Smith" ; 

   dc:source map:persons . 

Figure 2: Annotated reified statement example. 

In the incremental RDF triple generation, the basic challenge 

lies in discovering which mapping definitions were added, 

deleted, and/or modified, and also which database tuples were 

added, deleted, and/or modified since the last time the incremental 

RDF generation took place, and perform the mapping only for this 

altered subset. This means that it is required, for each generated 

triple, to store annotation information regarding its provenance. 

Thus is the core idea in the case of incremental transformation. 

Ideally, the exact database cell and mapping definition that 

led to the specific triple generation should be stored. However, 

using R2RML, the atom of the mapping definition becomes the 

triples map. Therefore, when annotating a generated triple with 

the mapping definition that generated it, we can inspect at 

subsequent executions both the triples map elements (e.g. subject 

template), as well as the dataset from the database, in order to 

assert whether the data are changed or not. 

 
map:persons 

  rr:logicalTable [ rr:tableName '"eperson"'; ]; 

  rr:subjectMap [ 

    rr:template 

'http://data.example.org/repository/person/{"epers

on_id"}'; 

    rr:class foaf:Person; ];  

    rr:predicateObjectMap [ 

    rr:predicate foaf:name; 

    rr:objectMap [ rr:template '{"firstname"} 

{"lastname"}' ; 

    rr:termType rr:Literal; ] ]. 

Figure 3. Triples maps are the atoms of the mapping 

document. 

Consider, for instance, the triples map in Figure 3. In this 

case, when one of the source tuples change (i.e. the table 

“eperson” appears to be modified), then the whole triples map 

definition will be executed. This execution would also be 

triggered in case the triples map definition had any changes. 

In order to detect changes in the source dataset or the 

mapping definition itself, the proposed approach utilizes hashes 

for the information of interest. The algorithm that performs the 

incremental RDF graph generation is presented in Algorithm 1. 

The hashes were produced using the MD5 cryptographic hash 

function. 

The basic concepts involved here are the mapping document, 

the triples map, and the logical table. A mapping document is an 

RDF document in R2ML containing triples maps, containing 

instructions about how to convert the source relational database 

contents into RDF. Each of these triples maps, similar to the one 

in Figure 3, contains a logical table that, in its turn, contains an 

SQL select query, which has a respective select query result set, 

with the tuples retrieved from the database. As a result, the hashes 

that are stored in the log file include: the source logical table SQL 

SELECT query, the respective dataset that is retrieved from the 

source database, and the whole triples map definition itself. 

 

Input: RDF mapping document in R2RML 

Output: RDF triples 

for triples map ∈ mapping document 

   if select query hash != logged select query 

hash or 

      resultset hash != logged resultset hash or 

      triples map hash != logged triples map hash 

   then 

      produce triples, by executing mapping 

instructions for triples map 

   end if 

end for 

write MD5(select query) to log 

write MD5(select query resultset) to log 

write MD5(triples map) to log 

Algorithm 1: In incremental RDF generation, mapping 

definitions will be processed only when changes are detected in 

the queries, their result sets, or the mapping definitions 

themselves. 

In order to create a unique hash over a result set, and 

subsequently detect whether changes were performed on it or not, 

Algorithm 2 was devised. It is noteworthy to mention that in order 

to ensure that the order of the results would be the same, in cases 

when an ORDER BY construct was not present, it was added 

programmatically, according to the first field in the table. If the 

query was ordered beforehand, it was left intact. 

Input: a result set result set 

Output: string hash 

for row ∈ result set do 

   for column ∈ row do 

      hash = concatenate(hash, column as string) 

   end 

   hash = MD5(hash) 

end 

Algorithm 2. Hash a result set from the source relational 

database. 

Next, in order to verify that no changes were performed on 

the triples map definitions themselves, they were hashed in order 

to allow subsequent checks for modifications. For each triples 

map definition, the input string for the hash contained: the SQL 

selection query, the subject template, the Class URIs of which the 

subject was an instance, the predicate-object map templates and/or 

columns, the predicates, and finally, the parent triples map, if 

present. 

In the case of incremental storage, as the output is persisted 

at a relational database-backed triplestore or at a Jena TDB, no 

hashes are needed. Instead, the resulting RDF graph is generated 

and updates to the existing RDF graph are translated into 

commands to the dataset (such as SQL DELETE and INSERT). 

The algorithm in this case is different, as shown in Algorithm 3. 

For the interested reader, the source code of the 

implementation that served as the basis for our experiments is 

available online at github.com/nkons/r2rml-parser. 

4. MEASUREMENTS 
This Section provides information regarding the environment 

setup, the evaluation results and a discussion over our findings. 

4.1 Measurements Setup 
Using the popular open-source institutional repository 

software solution DSpace (dspace.org), seven repositories were 

constructed and their relational database backends were populated 

with synthetic data, comprising 1k, 5k, 10k, 50k, 100k, 500k, 1m 



items (i.e. rows in the item table), respectively. Several mapping 

files were considered for our tests. The first set of mapping  

Input: RDF model new model, RDF model existing 

model 

Output: An updated RDF model 

for triple ∈ new model 

   if triple ∉  existing model then 

      add triple to list of statements  

      to remove 

   end 

end 

 

for triple ∉  existing model 

   add triple to list of statements to add 

end 

 

remove list of statements to remove from existing 

model 

add list of statements to add to existing model 

return existing model 

Algorithm 3. Incrementally dump the resulting model to a 

relational database or a Jena TDB backend. 

definitions, targeting the contents of the repository, comprised 

“complicated” SQL queries (including JOINs among 4 tables), as 

the one presented below: 
SELECT i.item_id AS item_id, mv.text_value AS 

text_value 

FROM item AS i, metadatavalue AS mv, 

metadataschemaregistry 

AS msr, metadatafieldregistry AS mfr WHERE 

msr.metadata_schema_id=mfr.metadata_schema_id AND 

mfr.metadata_field_id=mv.metadata_field_id AND 

mv.text_value is not null AND 

i.item_id=mv.item_id AND 

msr.namespace='http://dublincore.org/documents/dcm

i-terms/' 

AND mfr.element='coverage' 

AND mfr.qualifier='spatial' 

This query was later simplified, by removing one of the 

JOIN conditions and two of the WHERE conditions, thus reducing 

its complexity and becoming: 
SELECT i.item_id AS item_id, mv.text_value AS 

text_value 

FROM item AS i, metadatavalue AS mv, 

metadatafieldregistry AS mfr WHERE 

mfr.metadata_field_id=mv.metadata_field_id AND 

i.item_id=mv.item_id AND 

mfr.element='coverage' AND 

mfr.qualifier='spatial' 

Another, even simpler mapping definition was also 

considered, comprising a simple query without any JOIN 

conditions, as follows: 
SELECT "language", "netid", "phone",  

"sub_frequency","last_active", "self_registered", 

"require_certificate", "can_log_in", "lastname", 

"firstname", "digest_algorithm", "salt", 

"password", "email", "eperson_id" 

FROM "eperson" ORDER BY "language" 

Measurements were performed on machine with a dual-core 

2GHz processor, with 4096MB RAM and 40GB hard disk. The 

machine was running Ubuntu Linux, Oracle Java 1.7.0_45, 

Postgresql version 9.1.9, and Mysql x86_64 version 5.5.32. We 

note that several experiments were conducted initially using the 

OpenJDK 64-Bit Java version, which led, however, to frequent 

Out of Memory issues, forcing us to switch to Oracle’s 

implementation. 

It has to be noted, that, in order to deal with database caching 

effects, the queries were run several times, in order to get the 

system “warmed up”, prior to performing our measurements. 

4.2 Measurements Results 
In Figures 4 to 9, the y-axis measures execution time in seconds, 

while the letters in the x-axis correspond to the following cases: a: 

non-incremental mapping transformation, b: incremental, for the 

initial time, c, d, e, f, g, h: incremental transformation, where the 

ratio of the changed triples over the total amount of triples in the 

resulting graph is 0, 1/12, 1/4, 1/2, 3/4, and 1, respectively. 

4.2.1 Exporting on the hard disk 
The first set of performance measurements was realized using the 

hard disk as the output storage medium. In Figure 4, the triples 

maps contained simple SQL queries (the third query in Section 

4.1). We note that the time needed for the initial export of the 

database contents into an RDF graph increases as the number of 

the triples in the resulting model increases. Incremental dumps 

take more time than non-incremental, since the reified model also 

has to be created and stored, as analyzed in Section 3, a sacrifice 

in performance that pays off in subsequent executions. Similar 

results were obtained for mappings containing simple SQL 

queries resulting graphs containing up to 300k triples. Similar 

results are observed in Figure 5, regarding the more complicated 

SQL queries (the first query in Section 4.1), the difference 

however is not as great as in the previous case. 

Next, in Figure 6, the same tests were performed in the 

complicated SQL query case, showing that the results here were 

very good. As Figure 6 shows, the time required to dump database 

contents non-incrementally was less than the initial incremental 

dump. Consecutive dumps, however, took less than the initial 

time, practically no time when no changes were detected in the 

source database, and performing faster even in the case when the 

percentage of the initial data that were changed reached to 75%. 

Only when the vast majority of the data was changed, did the 

incremental dump take longer than the non-incremental one. 

Next, we considered the effect that the query simplification would 

have on the result. In Figure 7, we demonstrate a set of 

measurements with all parameters the same, except for the query 

itself, which was similar to the second query in Section 4.1. Query 

simplification did have an impact on the resulting time, but a 

rather small one. 

In order to verify how the number of triples of the resulting RDF 

graph affects the performance, we added 6 triples map statements, 

similar to the existing ones, thus producing 6 times as much 

triples. This allowed us to scale up to 3 million triples, the 

behavior however remained the same. 

4.2.2 Exporting on a relational database 
Τhe next set of measurements was performed using the relational 

database as the output medium. Our experiments revealed that 

database behavior compared to hard disk behavior gave 

dissatisfactory performance times at all cases, regardless to the 

number of the triples in the resulting graph. Comparative 

performance is illustrated in Figure 8 and Figure 9, showing that 

the relational database as a backend performed more poorly than 

the hard disk or TDB, which justifies Jena developers’ decision to 

drop support for a relational database in favor of TDB as an RDF 

backend. 



4.2.3 Exporting on Jena TDB 
The next set of experiments included incremental transformation 

and storage using TDB. As the experiments showed, its behavior 

is similar to the one of the database backend, but with a much 

faster performance, at all sizes of triples in the resulting graph. 

For instance, as Figure 8 shows, the results for the complicated 

mappings, in cases when each of the initial SQL queries returns 

10k rows using TDB is much faster than using a relational 

database. Still, however, storing on the hard disk is the fastest 

solution. The next figure, Figure 9, compares results in the 

database and results in TDB. In this case, however, it was not 

possible to obtain result output on the hard disk, or on the 

relational database in cases where changes in the initial model had 

taken place, because of out-of-memory errors. 
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Figure 4. Time needed for the initial export of database 

contents into an RDF file using simple queries in mappings. 
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Figure 5. Time needed for the initial export of database 

contents into an RDF file, using complicated queries in 

mappings. 
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Figure 6. Incremental dumps in the case of complicated 

queries outperform non-incremental dumps for changes on 

approximately 3/4 of the data. 
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Figure 7. Incremental dumps it the case of complicated 

mapping queries (JOINs among 4 tables) and simplified 

queries (JOINs among 3 tables) with the same results. 
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Figure 8. Hard disk, database, and Jena’s TDB as the output 

medium. Complicated mappings, 10k items in the source 

database, approx. 180k triples in the resulting model. 
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Figure 9. Database vs TDB behavior: Complicated mappings, 

100k items in the source database, approx. 1.8 million triples 

in the resulting model. 

4.3 Discussion 
First, it has to be noted that logging the provenance of each 

triple on the hard disk has a great impact on the size required to 

store the logged output. Logging, which takes five times as much 

space as the result RDF model, improves performance for small to 

average datasets up to several hundreds of thousands of triples. 

The upper bound that will be defined by the system’s RAM will 

have to contain the logged reified model. Therefore, models that 

will be produced will not be able to scale as much. For larger 

models, however, TDB is preferred, mostly because of the 

constraints in terms of memory, imposed by the logging 

mechanism. Thus, while persisting the final model into a database 

or TDB takes longer than outputting it to the hard disk, this does 

not raise memory usage to the level of throwing out-of-memory 

exceptions, allowing the result to scale more. In our experiments, 

the TDB-backed triplestore scaled to 1.8 million triples. Of 

course, TDB scales more, but for our measurements no more tests 

were needed to demonstrate the approach’s behavior according to 

the storage mechanism. 

The fact that the consecutive executions take less time than 

the initial time is largely due to the fact that the unchanged result 

graph subsets are not re-generated; only the respective SQL 

queries are executed but the queries’ results are not iterated upon 

in order to produce triples. Moreover, relying upon the logged 

hashes of previous executions allows the result to be compared to 

the previous one (previous dump) without having to load both 

models in memory, enabling further scaling of the approach. 



Notably, the RDF serialization format affected performance. 

Several serializations, such as RDF/XML or TTL try to pretty-

print the result, consuming extra resources. Because of this, the 

serialization format that was adopted in our tests, in the cases 

when the resulting RDF had to be output to hard disk – also in 

creating the reified model – the “N-TRIPLES” syntax was used. 

It has to be noted that, given the fact that reification is being 

reconsidered in RDF 1.1 semantics, as named graphs could 

support the use cases of reification without requiring a data 

transform, an alternative to the hereby proposed approach would 

be to replace reified triples with named graphs, each one 

containing a statement, and allowing properties to be asserted on 

it. 

Also, since there are various tools that allow direct, 

synchronous RDB2RF mappings, one could argue whether the 

whole approach is too complex and not worth the implementation 

overhead. However, the task of exposing database contents as 

RDF could be considered similar to the task of maintaining search 

indexes next to text content: data freshness can be sacrificed in 

order to obtain much faster results [2]. 

Although this approach could be followed in many domains, 

it finds ideal application in cases when data are not updated to a 

significant amount often (e.g. daily), for instance in the 

bibliographic domain [20]. In these cases, when freshness is not 

crucial and/or selection queries over the contents are more 

frequent than the updates, what our approach succeeds in, is a 

lower downtime of the system that hosts the generated RDF graph 

and serves query-answering. 

Once the RDF dump is exported, a software system could 

operate completely based on the semantically enriched 

information. This approach could be materialized using for 

instance Jena’s Fuseki SPARQL server, the Sesame framework 

(www.openrdf.org), Virtuoso, or even native RDF support that 

can be found in modern RDBMS’s such as Oracle. Adoption of 

such approaches enables the custom implementation of systems 

that allow accessing and operating on the RDF graph, after 

hosting it on a triplestore server. Materialization of the RDF 

dumps could in general be part of larger systems using a push or a 

pull approach to propagate the changes from the database to the 

triplestore. 

Also noteworthy is the fact that still, exporting data as RDF 

covers half of the requirements that have to be met before 

publishing datasets as RDF. The other half of the problem 

concerns the semantics that are infused in the data: The hereby 

introduced methodology guarantees only the syntactic validity of 

the result, without any checks on the semantics of the target RDF 

graph. Meanwhile, it has to be underlined that caution is required 

in producing de-referenceable URIs. Mistakes can easily go 

unnoticed, even if syntactically all is correct. 

5. CONCLUSIONS AND FUTURE WORK 
Overall, this paper’s contribution is a study of the 

incremental RDF generation and storage problem, in addition to 

proposing an approach and assessing its performance after 

modifying several problem parameters. Our measurements 

indicate that the proposed approach performs optimally when the 

triples mappings contain complicated SQL queries, and the 

resulting RDF graph is persisted on the hard disk. In these cases, 

despite the increase in the time required for the initial 

(incremental) dump, subsequent dumps are performed much 

faster, especially in cases when the changes affect less than the 

half of the initial content. However, for graphs containing millions 

of triples, storing in TDB is the optimal solution, since storing in 

the hard disk was limited by the physical memory and storing in 

the relational database performed much worse. During our tests 

we were struggling with out-of-memory errors, since, in 

incrementally generating RDF, both the resulting model and the 

reified had to be loaded in-memory before outputting to the target 

medium. 

Several directions exist towards which this work could be 

expanded. These could include the investigation of two-way 

updates: in the same manner in which updates in the database are 

reflected on the triplestore, updates on the triplestore could be 

sent back to the database. This could be made possible by keeping 

the source mapping definition at the target, as annotation on the 

reified statement. Additional steps that could be followed in order 

to expand this work could include consideration of RDF (1.1-

compatible) datasets in the mapping result, each one originating 

from a different triples map definition. Future work could also 

include further studying the impact of the SQL complexity on 

generating the result. In order to study this, the total time needed 

to execute the SQL queries that retrieve the data from the source 

database could be measured. Last, statement annotations to 

include other annotations as well, e.g. geo-tagging, timestamps, 

etc., and not only mapping definition provenance, thus allowing 

incremental RDF generation in other scenarios, in the same 

manner. 
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